
MAT 708 - Exercises

1. In the notes we used the fact that if µ and ν are
positive measures on (X,M) then so is the set
function ρ = µ+ν defined in the obvious way by
ρ(E) = µ(E) + ν(E).

Verify that ρ is in fact a measure.

2. Generalizing the previous problem: let µ and ν
be either signed measures or complex measures
on a measurable space (X,M). Define µ + ν
as above, and define ρ = λµ by ρ(E) = λµ(E),
where λ ∈ R (if µ is signed) or C (if µ is com-
plex).

Show that the finite signed measures form a vec-
tor space over R and that the complex measures
form a vector space over C.

Explain why the set of signed measures is not a
vector space with these operations.

3. Show that if µ is a signed measure on X, then
µ(X) 6= ±∞ if and only if µ is a finite signed
measure.

4. Show that if ν is a signed measure on (X,M)
and µ1 and µ2 are positive measures on the same
space such that ν = ν1 − ν2, then ν1 ≥ ν+ and
ν2 ≥ ν−.

5. Let ν be a signed measure on (X,M). Show that
if Aj is a sequence of sets in M with Aj ⊆ Ak if
j ≤ k, then

ν(
⋃
j

Aj) = lim
j→∞

ν(Aj).

(Try to prove this without using the Jordan De-
composition).

6. Show that if ν � µ and ν ⊥ µ, then ν(E) = 0
for every measurable set E.

7. Suppose µ and ν are finite measures on (X,M)
with ν � µ and let λ = µ+ν. If f = dν/dλ, then
show 0 ≤ f < 1 µ-a.e., and dν/dµ = f/(1− f).

8. Show that the uniform norm

‖f‖u = sup
x∈X

|f(x)|

is a norm on vector spaces of R- or C- valued
functions.

9. This problem generalizes the concepts intro-
duced in Example 4.1.6 and 4.1.8. You will also
need to review the material on Hölder’s inequal-
ity. This is a hard problem and counts as credit
for 3 regular problems if completely solved.

Recall that if A is a self-adjoint matrix, one
can find a unitary matrix which diagonalises
it, A = U∗DU , where D is a diagonal matrix
whose entries are the eigenvalues λk of A. In
this case, if f : C → C is a function, we define
f(A) = U∗f(D)U , where f(D) is the diagonal
matrix with entries f(λk) on the diagonal.

(a) Show that A∗A is self-adjoint for any A ∈
Mn. Define |A| = (A∗A)1/2, and show that
|A| is self-adjoint.

(b) For 1 ≤ p < ∞, we define the Schatten
p-norms on Mn by

‖A‖p = tr(|A|p)1/p.

Show that

‖A‖p =

(
n∑

k=1

|λk|p
)1/p

= ‖(λ1, . . . , λn)‖p,

where λk are the eigenvalues of |A|, and
conclude that ‖kA‖p = |k|‖A‖p and
‖A‖p = 0 iff A = 0.

(c) Let

A =
[
1 1
0 1

]
.

Find ‖A‖1, ‖A‖2 and ‖A‖10.
(d) Use Hölder’s inequality for `p-spaces to

prove Hölder’s inequality for Schatten p-
norms: if p and q are conjugate exponents,
then

‖AB‖1 ≤ ‖A‖p‖B‖q

for all A and B ∈ Mn.
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(e) Use Hölder’s inequality to show that the
triangle inequality holds for the Schatten
p-norms for 1 < p < ∞. Conclude that
the Schatten p-norms are in fact norms for
1 < p < ∞.

(f) Show that the Schatten 1-norm is in fact a
norm.

The point of this problem is part (e) and (f), so
if you can show that the Schatten p-norms are
in fact norms for 1 ≤ p < ∞ using other means,
you will get full credit for this problem.

10. Let H be a finite dimensional Hilbert space, and
let T ∈ B(H). Show that the operator norm of
T is given by

‖T‖ = max{λ1/2 : λis an eigenvalue of T ∗T}.

Briefly discuss why, in light of this and the previ-
ous problem, it is reasonable to call the operator
norm of a matrix regarded as a linear transfor-
mation the “Schatten ∞-norm.”

11. A subset K of a vector space V is convex if

n∑
k=1

λkvk ∈ K,

for all vk ∈ K and λk ∈ [0, 1] such that

n∑
k=1

λk = 1.

A subset K of a vector space is circled if λv ∈ K
for every every v ∈ K and every scalar λ with
|λ| = 1.

Show that the unit ball of a normed vector space
is a convex, circled set.

12. Given a convex, circled set K ⊆ V containing 0,
define the gauge of K to be the function ρK :
V → [0,∞] defined by

ρK(v) = inf{λ ≥ 0 : v ∈ λK}.

Show that if ρK is finite (ie. K does not contain
any rays), then ρK is a seminorm.

13. Let (X,M) be a measurable space, and let M
be the vector space of all finite signed measures
on (X,M) (see problem 2). Define

‖µ‖ = |µ|(X),

and show that this is a norm on M . Show that
M is complete, and hence a Banach space.

14. Let H be an infinite dimensional Hilbert space.
Show that the closed unit ball of H is not com-
pact.

15. Let (X,M, µ) be a finite measure space, and let
1 ≤ p < q ≤ ∞. We know that since Lq(X) ⊆
Lp(X), the identity map Tf = f is a linear map
from Lq(X) to Lp(X). Show that for q < ∞,

‖T‖ = µ(X)q/p(p−q).

Show that if q = ∞, then

‖T‖ = µ(X)1/p.

Show that if 1 ≤ p < q ≤ ∞, the identity map
T : `p(X) → `q(X) has operator norm ‖T‖ = 1.

16. Let c∞ be the set of all sequences of complex
numbers x = (xn)∞n=1, such that

lim
n→∞

xn = 0.

Show that this is a Banach space with the uni-
form norm

‖x‖u = sup
n∈N

|xn|.

Show that c∗∞ = `1(N).

17. Find an example of an orthonormal basis of the
Hilbert space H = L2(R,m).

18. Let 1 ≤ p < q ≤ ∞. Give an example of a
function which is in Lr(R,m) for all r with p <
r < q, but which is not in Lp(R,m) or Lq(R,m).

19. Let (X,M) be a measurable space, with (pos-
itive) measures µ and ν, and ν � µ. If 1 ≤
p ≤ ∞, show that a function f ∈ Lp(X, ν) is an
element of Lp(X, µ) if

dν

dµ
∈ L∞(X, µ).
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20. Let H and K be Hilbert spaces. Let H ⊕K be
the set H × K with the standard vector space
operations, and inner product

〈(x, v), (y, u)〉 = 〈x, y〉+ 〈u, v〉

for all x, y ∈ H and u, v ∈ K. Show that H⊕K
is a Hilbert space.

Show that (xn, vn) → (x, v) in H⊕K if and only
if xn → x in H and vn → v in K.

Show that if {eα : α ∈ I} is an orthonormal basis
for H and {fβ : β ∈ J} is an orthonormal basis
for K, then {(eα, 0) : α ∈ I} ∪ {(0, fβ) : β ∈ J}
is an orthonormal basis for H ⊕K.

21. Let H = L2([0, 1]) and D : C∞([0, 1]) →
C∞([0, 1]) be the differentiation operator Df =
f ′. Show that the graph of D,

GD = {(f,Df) : f ∈ C∞([0, 1])}

is a closed subspace of H ⊕H, ie. if

(fn, Dfn) → (f, g)

then (f, g) ∈ GD, ie. g = Df .

22. Let H and K be Hilbert spaces. Let H�K be the
vector space spanned by vectors u⊗ v for u ∈ H
and v ∈ K, where λ(u⊗v) = (λu)⊗v = u⊗(λv)
and u1 ⊗ v + u2 ⊗ v = (u1 + u2) ⊗ v. In other
words, a typical vector looks like

n∑
k=1

λkuk ⊗ vk.

Show that〈
n∑

k=1

λkuk ⊗ vk,

m∑
j=1

µjwj ⊗ zj

〉

=
n∑

k=1

m∑
j=1

〈uk, wj〉〈vk, zj〉

defines an inner product on H �K.

We define the tensor product H⊗K be the com-
pletion of this vector space in the norm derived
from the inner product.

Show that if {eα : α ∈ I} is an orthonormal
basis for H and {fβ : β ∈ J} is an orthonormal
basis for K, then {eα ⊗ fβ : α ∈ I, β ∈ J} is an
orthonormal basis for H ⊗K.
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