MAT 708 - Exercises

1. In the notes we used the fact that if μ and ν are positive measures on (X, \mathcal{M}) then so is the set function $\rho = \mu + \nu$ defined in the obvious way by $\rho(E) = \mu(E) + \nu(E).$

Verify that ρ is in fact a measure.

2. Generalizing the previous problem: let μ and ν be either signed measures or complex measures on a measurable space (X, \mathcal{M}) . Define $\mu + \nu$ as above, and define $\rho = \lambda \mu$ by $\rho(E) = \lambda \mu(E)$, where $\lambda \in \mathbb{R}$ (if μ is signed) or \mathbb{C} (if μ is complex).

Show that the finite signed measures form a vector space over \mathbb{R} and that the complex measures form a vector space over \mathbb{C} .

Explain why the set of signed measures is not a vector space with these operations.

- 3. Show that if μ is a signed measure on X, then $\mu(X) \neq \pm \infty$ if and only if μ is a finite signed measure.
- 4. Show that if ν is a signed measure on (X, \mathcal{M}) and μ_1 and μ_2 are positive measures on the same space such that $\nu = \nu_1 - \nu_2$, then $\nu_1 \ge \nu_+$ and $\nu_2 \ge \nu_-$.
- 5. Let ν be a signed measure on (X, \mathcal{M}) . Show that if A_j is a sequence of sets in \mathcal{M} with $A_j \subseteq A_k$ if $j \leq k$, then

$$\nu(\bigcup_j A_j) = \lim_{j \to \infty} \nu(A_j).$$

(Try to prove this without using the Jordan Decomposition).

- 6. Show that if $\nu \ll \mu$ and $\nu \perp \mu$, then $\nu(E) = 0$ for every measurable set *E*.
- 7. Suppose μ and ν are finite measures on (X, \mathcal{M}) with $\nu \ll \mu$ and let $\lambda = \mu + \nu$. If $f = d\nu/d\lambda$, then show $0 \le f < 1 \mu$ -a.e., and $d\nu/d\mu = f/(1-f)$.

8. Show that the uniform norm

$$||f||_u = \sup_{x \in X} |f(x)|$$

is a norm on vector spaces of $\mathbb{R}\text{-}$ or $\mathbb{C}\text{-}$ valued functions.

9. This problem generalizes the concepts introduced in Example 4.1.6 and 4.1.8. You will also need to review the material on Hölder's inequality. This is a hard problem and counts as credit for 3 regular problems if completely solved.

Recall that if A is a self-adjoint matrix, one can find a unitary matrix which diagonalises it, $A = U^*DU$, where D is a diagonal matrix whose entries are the eigenvalues λ_k of A. In this case, if $f : \mathbb{C} \to \mathbb{C}$ is a function, we define $f(A) = U^*f(D)U$, where f(D) is the diagonal matrix with entries $f(\lambda_k)$ on the diagonal.

- (a) Show that A^*A is self-adjoint for any $A \in M_n$. Define $|A| = (A^*A)^{1/2}$, and show that |A| is self-adjoint.
- (b) For $1 \leq p < \infty$, we define the Schatten *p*-norms on M_n by

$$||A||_p = \operatorname{tr}(|A|^p)^{1/p}.$$

Show that

$$||A||_p = \left(\sum_{k=1}^n |\lambda_k|^p\right)^{1/p} = ||(\lambda_1, \dots, \lambda_n)||_p,$$

where λ_k are the eigenvalues of |A|, and conclude that $||kA||_p = |k|||A||_p$ and $||A||_p = 0$ iff A = 0.

(c) Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Find $||A||_1$, $||A||_2$ and $||A||_{10}$.

(d) Use Hölder's inequality for ℓ^p -spaces to prove Hölder's inequality for Schatten *p*norms: if *p* and *q* are conjugate exponents, then

$$||AB||_1 \le ||A||_p ||B||_q$$

for all A and $B \in M_n$.

- (e) Use Hölder's inequality to show that the triangle inequality holds for the Schatten p-norms for 1 . Conclude that the Schatten <math>p-norms are in fact norms for 1 .
- (f) Show that the Schatten 1-norm is in fact a norm.

The point of this problem is part (e) and (f), so if you can show that the Schatten *p*-norms are in fact norms for $1 \le p < \infty$ using other means, you will get full credit for this problem.

10. Let H be a finite dimensional Hilbert space, and let $T \in B(H)$. Show that the operator norm of T is given by

$$||T|| = \max\{\lambda^{1/2} : \lambda \text{ is an eigenvalue of } T^*T\}.$$

Briefly discuss why, in light of this and the previous problem, it is reasonable to call the operator norm of a matrix regarded as a linear transformation the "Schatten ∞ -norm."

11. A subset K of a vector space V is *convex* if

$$\sum_{k=1}^n \lambda_k v_k \in K,$$

for all $v_k \in K$ and $\lambda_k \in [0, 1]$ such that

$$\sum_{k=1}^{n} \lambda_k = 1.$$

A subset K of a vector space is *circled* if $\lambda v \in K$ for every every $v \in K$ and every scalar λ with $|\lambda| = 1$.

Show that the unit ball of a normed vector space is a convex, circled set.

12. Given a convex, circled set $K \subseteq V$ containing 0, define the gauge of K to be the function ρ_K : $V \to [0, \infty]$ defined by

$$\rho_K(v) = \inf\{\lambda \ge 0 : v \in \lambda K\}.$$

Show that if ρ_K is finite (ie. K does not contain any rays), then ρ_K is a seminorm.

13. Let (X, \mathcal{M}) be a measurable space, and let M be the vector space of all finite signed measures on (X, \mathcal{M}) (see problem 2). Define

$$\|\mu\| = |\mu|(X),$$

and show that this is a norm on M. Show that M is complete, and hence a Banach space.

- 14. Let H be an infinite dimensional Hilbert space. Show that the closed unit ball of H is not compact.
- 15. Let (X, \mathcal{M}, μ) be a finite measure space, and let $1 \leq p < q \leq \infty$. We know that since $L^q(X) \subseteq L^p(X)$, the identity map Tf = f is a linear map from $L^q(X)$ to $L^p(X)$. Show that for $q < \infty$,

$$||T|| = \mu(X)^{q/p(p-q)}.$$

Show that if $q = \infty$, then

$$||T|| = \mu(X)^{1/p}.$$

Show that if $1 \le p < q \le \infty$, the identity map $T: \ell^p(X) \to \ell^q(X)$ has operator norm ||T|| = 1.

16. Let c_{∞} be the set of all sequences of complex numbers $x = (x_n)_{n=1}^{\infty}$, such that

$$\lim_{n \to \infty} x_n = 0$$

Show that this is a Banach space with the uniform norm

$$||x||_u = \sup_{n \in \mathbb{N}} |x_n|.$$

Show that $c_{\infty}^* = \ell^1(\mathbb{N})$.

- 17. Find an example of an orthonormal basis of the Hilbert space $H = L^2(\mathbb{R}, m)$.
- 18. Let $1 \leq p < q \leq \infty$. Give an example of a function which is in $L^r(\mathbb{R}, m)$ for all r with p < r < q, but which is not in $L^p(\mathbb{R}, m)$ or $L^q(\mathbb{R}, m)$.
- 19. Let (X, \mathcal{M}) be a measurable space, with (positive) measures μ and ν , and $\nu \ll \mu$. If $1 \leq p \leq \infty$, show that a function $f \in L^p(X, \nu)$ is an element of $L^p(X, \mu)$ if

$$\frac{d\nu}{d\mu} \in L^{\infty}(X,\mu)$$

20. Let H and K be Hilbert spaces. Let $H \oplus K$ be the set $H \times K$ with the standard vector space operations, and inner product

$$\langle (x,v), (y,u) \rangle = \langle x,y \rangle + \langle u,v \rangle$$

for all $x, y \in H$ and $u, v \in K$. Show that $H \oplus K$ is a Hilbert space.

Show that $(x_n, v_n) \to (x, v)$ in $H \oplus K$ if and only if $x_n \to x$ in H and $v_n \to v$ in K.

Show that if $\{e_{\alpha} : \alpha \in I\}$ is an orthonormal basis for H and $\{f_{\beta} : \beta \in J\}$ is an orthonormal basis for K, then $\{(e_{\alpha}, 0) : \alpha \in I\} \cup \{(0, f_{\beta}) : \beta \in J\}$ is an orthonormal basis for $H \oplus K$.

21. Let $H = L^2([0,1])$ and $D : C^{\infty}([0,1]) \rightarrow C^{\infty}([0,1])$ be the differentiation operator Df = f'. Show that the graph of D,

$$\mathcal{G}_D = \{(f, Df) : f \in C^{\infty}([0, 1])\}$$

is a closed subspace of $H \oplus H$, ie. if

$$(f_n, Df_n) \to (f, g)$$

then $(f,g) \in \mathcal{G}_D$, i.e g = Df.

22. Let H and K be Hilbert spaces. Let $H \odot K$ be the vector space spanned by vectors $u \otimes v$ for $u \in H$ and $v \in K$, where $\lambda(u \otimes v) = (\lambda u) \otimes v = u \otimes (\lambda v)$ and $u_1 \otimes v + u_2 \otimes v = (u_1 + u_2) \otimes v$. In other words, a typical vector looks like

$$\sum_{k=1}^n \lambda_k u_k \otimes v_k.$$

Show that

$$\left\langle \sum_{k=1}^{n} \lambda_k u_k \otimes v_k, \sum_{j=1}^{m} \mu_j w_j \otimes z_j \right\rangle$$
$$= \sum_{k=1}^{n} \sum_{j=1}^{m} \langle u_k, w_j \rangle \langle v_k, z_j \rangle$$

defines an inner product on $H \odot K$.

We define the *tensor product* $H \otimes K$ be the completion of this vector space in the norm derived from the inner product.

Show that if $\{e_{\alpha} : \alpha \in I\}$ is an orthonormal basis for H and $\{f_{\beta} : \beta \in J\}$ is an orthonormal basis for K, then $\{e_{\alpha} \otimes f_{\beta} : \alpha \in I, \beta \in J\}$ is an orthonormal basis for $H \otimes K$.