9. Introductory Number Theory

- 1. For a and b given below, find q and r such that a = qb + r and $0 \le r < b$.
 - (a) a = 10, b = 3.
 - (b) a = -84, b = 5.
 - (c) a = 75, b = 5.
 - (d) a = -66, b = 11.
- The C programming language uses % for the mod operation. However if you calculate -12 % 5 in C, it returns -2. Explain why this is a problem if you are a mathematician.
- 3. Prove that $a \equiv b \pmod{n}$ is an equivalence relation.
- 4. What are the equivalence classes of $a \equiv b \pmod{n}$?
- 5. Calculate gcd(a, b) for:
 - (a) a = 20, b = 25.
 - (b) a = 203, b = 56.
 - (c) a = -453, b = -36.
 - (d) a = 17, b = 15.
 - (e) a = 24, b = 0.
- 6. For each of the above pairs of numbers, find x and y such that ax + by = gcd(a, b).
- 7. Let a and n be relatively prime. Prove that there is some b such that $ab \equiv 1 \pmod{(n)}$.
- 8. Disprove: If p is prime, then given any integer a, a and p are relatively prime.
- 9. Calculate the following:
 - (a) $5 + 6 \pmod{8}$.
 - (b) $7 16 \pmod{19}$.
 - (c) $-3 \pmod{5}$.
 - (d) $7 \times 5 \pmod{12}$.
 - (e) $-(4 \times 2) \pmod{7}$.
 - (f) $6 \times 8 \pmod{12}$.

- Write out the addition and multiplication tables (mod 4).
- 11. Write out the multiplication table $\pmod{7}$.
- 12. Find the inverses of $1, 2, \ldots, 6 \pmod{7}$.
- 13. Prove that if a is invertible (mod n), then a^{-1} is invertible (mod n) and $(a^{-1})^{-1} = a \pmod{n}$.
- 14. Find $27^{-1} \pmod{41}$.
- 15. Find all solutions of $x^2 = 1 \pmod{3}$.
- 16. A field is a mathematical object $\mathbb{F} = (F, +, \times, 0, 1)$, where F is a set, $+: F \times F \to F$ and $\times: F \times F \to F$ are functions, and $0, 1 \in F$, which satisfies the following conditions:
 - (a) for all $x, y \in F$, x + y = y + x.
 - (b) for all $x, y, z \in F$, x + (y+z) = (x+y) + z.
 - (c) for all $x \in F$, x + 0 = x.
 - (d) for all $x \in F$, there is some $y \in F$ such that x + y = 0 (we usually write y = -x).
 - (e) for all $x, y \in F, x \times y = y \times x$.
 - (f) for all $x, y, z \in F$, $x \times (y \times z) = (x \times y) \times z$.
 - (g) for all $x \in F$, $x \times 1 = x$.
 - (h) for all $x \in F$ such that $x \neq 0$, there is some $y \in F$ such that $x \times y = 1$ (we usually write $y = x^{-1}$).
 - (i) for all $x, y, z \in F$, $x \times (y+z) = x \times y + x \times z$.

The real numbers, complex numbers, and rational numbers are all examples of fields. Prove that \mathbb{Z}_n is a field if and only if n is prime.