Math 251

Definitions and Results

This document includes the principal definitions and theorems that are introduced and proved
in class. In solving problems, you may refer to these definitions and results by the numbers here.

These are also the definitions that you should use when creating proofs; if you want to use a
different definition, you will need to prove (or quote a theorem) which says that they are equivalent.

Obviously, if a homework problem asks you to prove one of these results, you may not cite the
result (or any later result which depends on it), in your answer.

You may use any earlier homework problem to help solve a later homework problem, if you
think it will help.

1 Definitions and Theorems

You may assume that basic facts about equations and inequalities can be stated without proof.
Just make sure that your calculations are correct!

Definition 1.1
An integer is called even if it is divisible by 2.

Definition 1.2

Let a and b be integers. We say that a is divisible by b if there is an integer n such that a = bn. We
also say that b divides a, or b is a factor of a, or b is a divisor of a. We denote this symbolically
by b | a.

Definition 1.3
An integer a is called odd if there is some integer n such that a = 2n + 1.

Definition 1.4
An integer p is called prime if p > 1 and the only positive divisors of p are 1 and p.

Definition 1.5
An integer a is called composite if there is some integer n such that 1 <n < a and n | a.

Theorem 1.1 (Pythagoras’ Theorem)
Let a and b be the lengths of the legs of a right-angle triangle, and let ¢ be the length of the
hypotenuse. Then

a’ 4+ v* =2

2 Proof and Counterexamples

Proposition 2.1
The sum of two even integers is even.

Proposition 2.2
Let a, b and ¢ be integers. If a | b and b | ¢ then a | c.



Proposition 2.3
Let a be an integer. Then a is even if and only if a + 1 is odd.

Proposition 2.4
Let a, b, ¢ and d be integers. If a | b, b| ¢ and ¢ | d then a | d.

Proposition 2.5
Let x be an integer. If x > 1 then 23 4 1 is composite.

3 Boolean Algebra

Definition 3.1
A Boolean variable is a quantity which takes one of the values T or F.

Given two boolean variables x and y, we define the Boolean operations and A, or V, not —,
implication =, reverse implication <, double implication <, xor Y and nand A using the
following tables:

’ZL’ yHx/\y\x\/y\xéy\x<=y\x<z>y\x¥y\xﬁy‘

T T T T T T T F F T || 7T
T F F T F T F T F T| F
F T F T T F F T F F| T
F F F F T T T F T
Theorem 3.1

Let x, y and z be Boolean variables. Then:
(i) zANy=yAxand zVy=yVx (commutative rules).
(ii)) (xAy)ANz=xAN(yAz)and (xVy)Vz=xV(yVz) (associative rules).
(iii) —(—z) = x (double negation rule)
(iv) xAN(yVz)=(xAy)V(rAz)and zV (yAz)=(xVy)A(zVz) (distributive rules).
(v) x Az =z and x V x = = (idempotent rules).
(vi) AT =z and x V F = z (identity elements).
(vii) tANF=FandxV T=T.
(viii) x A (—x) = Fand z V (—z) = T.
(ix) x AN(xVy) =z and x V (x A y) = x (absorption rules).
(x) 7(x ANy) = (—z) V (—y) and =(z Vy) = (—x) A (-y) (DeMorgan’s laws).
(xi) x = y=(—-x)Vy.
(xii) x = y = (-y) = (—z) (contrapositive rule).
(xiii)) s y=(r=y) A (y = z).

Note: Bender and Williamson uses ~ for —.



4 Sets

Definition 4.1
A set is an unordered, repetition-free collection of mathematical objects. The objects in a set are
called its elements. If x is an element of the set S, we write x € S.

The number of elements in a set S is called its cardinality or size, denoted |S|. A set is called
finite if its cardinality is an integer, otherwise it is called infinite.

The set with no elements is called the empty set, denoted {} or ().

It is often convenient to restrict the set of mathematical objects that we are considering to a
particular universe of objects. The set of all objects in the universe is the universal set usually
denoted U.

Two sets are equal if they have exactly the same elements.

Proposition 4.1
Let A and B be sets. Then A= B ifandonlyifr € A=z € Bandx € B=x € A.

Definition 4.2
Let A and B be sets. We say A is a subset of B if every element of A is an element of B. We write
A C B.

If AC B and A # B, we say that A is a proper subset of B, and write A C B.

The power set of A is the set of all subsets of A, denoted P(A) or 24.

Proposition 4.2
If A is a set, then () C A.

Proposition 4.3
Let A be a set. Then x € A if and only if {z} C A.

Proposition 4.4
Let A and B be sets. Then A = B if and only if A C B and B C A.

Theorem 4.5
Let A be a finite set. Then

P(a)] = 2.

Definition 4.3
A predicate P on a set D is a rule which associates each element x € D with precisely one of the
values T or F, denoted P(x). (ie. P is a function from D to {T, F}.)

Given two predicates P and (), we can perform Boolean algebra operations to produce new
predicates: (P AQ)(z) = P(z) ANQ(z), (PV Q)(zx) = P(zx) vV Q(x) and (=P)(x) = =(P(x)).

Given a predicate P on a set D, we write

{reD:P(z)}
for the set of all x € D such that P(z) is T. If D is a universal set U we will simply write

{z: P(z)}.



Definition 4.4
If D is a set and P is a predicate on D, the statement “for all z € D, P(x),” written

VxeD,P(x),

is T if P(z) has constant value T.
The statement “there exists x € D such that P(x)”, written

dz e D,P(x)

is T if P(z) does not have constant value F.
The statement “there exists a unique x € D such that P(z)”, written

Nz e D,P(x)
is T if P(z) is F except for precisely one x where it is T.

Proposition 4.6
Let P be a predicate on D and X a subset of D. Then:

(i) =(V x € D, P(x)) is logically equivalent to 3 x € D,—(P(x)).
(ii)) =(3 = € D, P(x)) is logically equivalent toV x € D,—(P(x)).
(iii) VY x € D, P(z) A Q(x) is logically equivalent to (V x € D, P(x)) A (V x € D,Q(x)).
(iv) 3z € D,P(x

(

( Q(x) is logically equivalent to (3 = € D,P(z))V (3 x € D,Q(x)).
(v) VoeX, P(

(

(

) A

)V

x) is logically equivalent toV x € D, (z € X) = P(x)
(vi) 3 x € X, P(x) is logically equivalent to 3 x € D, (x € X) A P(z).
(vii) (Vz €0,P(z)) =

(viii) (3 z€0,P(z)) =

Proposition 4.7
Let P be a predicate on a set D, and let X be a subset of D. Then

{reD:(zeX)ANPx)}={xe X:P(x)}
and in particular
{r:zeX}=X

Proposition 4.8
Let X and Y be sets and P a predicate on X and Y. Then

(i) Vaee X,VyeY,P(x,y) is logically equivalent toV y € Y,V x € X, P(x,y).
(ii)) 3z € X,y €Y, P(x,y) is logically equivalent to 3y € Y,3 z € X, P(z,y).
It is customary to combine repeated quantifiers into one:

This. .. ‘ ... means this

VeeX,yeY,P(x,y) | Ve e X,VyeY,Px,y)

Va,ye X, Px,y) VeeX,Vye X, P(z,y)

JzxeX,yeY,Plx,y) | Jx e X,FyeY,Px,y)

Jz,y € X, P(z,y) Jrxe X, Jye X, Px,y)
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5 Set Operations

Definition 5.1
Let X and Y be sets. Then we define the intersection of X and Y to be the set

XNY={z:(zeX)AN(ze))}.
We define the union of X and Y to be the set
XUY={z:(zeX)V(reY)}

We say X and Y are disjoint if X NY = ().
The set difference of X and Y is

X\Y={zeX:x¢Y}
The symmetric difference of X and Y is
XAY={z:(zeX)¥Y(yeV)}=(X\Y)UY\X).
If U is some universe of objects we are considering, the complement of a set X is
X=U\X={z:2¢ X}

Theorem 5.1
Let X, Y and Z be sets in some universe of objects U. Then:

(i) XNY=YNX and XUY =Y UX (commutative rules).
(i) (XNY)NZ=XN({YNZ)and (XUY)UZ =XU (Y UZ) (associative rules).
(iii) (X)) =X
(iv) XN(YUZ)=(XNY)u(XNZ)and XU (Y NZ)=(XUY)N(XUZ) (distributive rules).
(v) XNX =X and X UX = X (idempotent rules).
(vi) XNU =X and X U = X (identity element).
(vii) XNO =0 and XUU =U.
(viii) XNX¢ =0 and XUX°=U.
(ix) XN(XUY)=X and X U(X NY) =X (absorption rules).
(x) (XNY)=XUYand (XUY)*=X°NY* (DeMorgan’s rules for complements).
(xi) U¢ =0 and )¢ =U.
(xii) X CY ifand only if Y C X°©.
(xiii) X \Y =XNY*.



(xiv) X\ (Y \ X)=X.
(xv) XN(Y\X)=0and XU (Y \X)=XUY.

(xvi) X\(YNZ)=X\Y)U(X\Z)and X\ (YUZ)=(X\Y)N(X\ Z) (DeMorgan’s rules
for set difference).

(xvii) X AY = (XUY)\ (X NY).
Not the similarities between this theorem and Theorem 3.1.

Theorem 5.2
If X and Y are finite sets, then

I X|+|Y|=|XUY|+|XNY].

Corollary 5.3
If X and Y are finite disjoint sets, then

I X|+ Y] =|XUY|.

Proposition 5.4
If X and Y are sets and P is a predicate on X UY, then

(i) Vo € X UY, P(x) is logically equivalent to (V x € X, P(x)) A (Y z € Y, P(z)).

(ii) 3 x € X UY, P(x) is logically equivalent to (3 z € X, P(z))V (3 xz €Y, P(x))

6 Contrapositive, Contradiction and Induction

A contrapositive proof of “If A then B” is a proof of the statement “If not B then not A.” This
proof method works because x = y is logically equivalent to (—y) = (—z) (Theorem 3.1(xii)).

A proof by contradiction (or reductio ad absurdum) of “If A then B” is a proof that
assumes that both A and (not B) are true and then shows that this situation is impossible. This
proof method works because x = y is logically equivalent to = A (—y) = F.

The Well-Ordering Principle says that any non-empty subset of the natural numbers has a
least element. Symbolically: VX CN, X #(, 3z e X,Vye X,z <y.

A proof by smallest counterexample of “For all n € N, P(n)” proceeds by assuming that
the set X = {n : =P(n)} of counterexamples is not empty and so has a smallest element by the
well-odering principle. We verify that this smallest element is not 1. We let n be this smallest
element and then proceed to obtain a contradiction, either by showing that there is a smaller
counterexample, or alternatively, by showing = ¢ X. This implies that X is empty.

The Principle of Mathematical Induction says that if P is a predicate on N such that P(1)
is true, and if P(n) is true, so is P(n+ 1), then P(n) is true for all natural numbers. Symbolically:
(PO)AN(VneN, Pln) = P(n+1)) = (VneN, P(n)).

A proof by induction of “For all n € N, P(n)” proceeds by first proving P(1), then assuming
P(n) and using it to prove P(n + 1). We can then cite the principle of mathematical induction to
conclude that P(n) is true for all n € N.



Proposition 6.1
Let a € N. Then a is even or odd, and cannot be both.

Corollary 6.2
Let a € Z. Then a is even or odd, and cannot be both.

7 Lists and Cartesian Products

Definition 7.1
A list (or sequence or word) is an ordered collection of objects. The objects in a list are called
the elements of the list. A list with elements a1, ag, ... etc. is denoted (a1, az,...).

The length of a list is the number of elements in the list (including repetitions). The empty
list is the list () of length 0.

Two lists are equal if they have the same length, and have the same elements in corresponding
positions.

An n-tuple is a list of length n.

Definition 7.2
Let n and k be integers with 0 < k < n. The falling factorial (n);, is the quantity

() = nn—1)(mn-2)---(n—k+1), k>0,
e L, k=0.

If n is a positive integer, we define the factorial of n to be the quantity
n!l=mn),=nn—-1)n-2)---3-2-1.
We define 0! = (0)p = 1.

Theorem 7.1 (Multiplication Principle)
The number of k-tuples for which there are ny choices for the first element, ny choices for the second

element, etc. is
ning - --Ng.

Corollary 7.2
The number of k-tuples whose elements are chosen from a pool of n possible elements is n* if
repetition is allowed, and (n)y if repetition is forbidden.

Definition 7.3
Let X1, X9, ... X,, be a collection of sets. The Cartesian product of the sets is the set of all
n-tuples (x1,x2,...,x,) such that xj € Xy, for allk =1,...,n. In symbols,

X1 x Xogx - x X, ={(z1,22,...,2y) :VEe{1,2,...,n},z € Xi}.

If X is a set, we define
X'=XxXx---xX.

n times




Corollary 7.3
Let X1, Xo, ... X,, be a collection of finite sets. Then

’Xl X X2 X - X Xn‘ = ’X1HX2| |Xn|

If X is a finite set, then
[ X" = |1 X"

8 Relations and Functions

Definition 8.1

A relation R is a set of 2-tuples. If (a,b) € R, we write a Rb and if (a,b) ¢ R we write a # b. The

domain of a relation is the set {a : 3 b,aRb} and the range of a relation is the set {b: 3 a,aRb}.
The inverse relation of a relation R is the relation

Rt ={(b,a) : (a,b) € R}.

That is b R~ a if and only if a R b

Let A and B be a sets. We say that R is a relation between A and B if R C A x B. We say
that a relation R is a relation on A if R C A2,

Let R be a relation on a set A. We say that a relation R on A is:

(i) reflexive if a is always related to itself, symbolically: ¥V a € A,a R a.
(ii) irreflexive if a is never related to itself, symbolically: ¥ a € A,a R a.
(iii) symmetric if whenever a R b, you have b R a, symbolically ¥ a,b € A,a Rb=-b R a.

(iv) antisymmetric if whenever aRb and bRa then a = b, symbolically ¥ a,b € A, (aRb)A(bRa) =
(a=0).

(v) total if for every a and b, a Rb or ba, symbolically: ¥ a,b € A,(a Rb)V (bR a).

(vi) transitive if whenever a Rb and b Rc, then a Rc, symbolically: Va,b,c € A,(aRb)A\(bRc) =
(aRc).

Definition 8.2
Let ~ be a relation on a set A. We say that ~ is an equivalence relation if ~ is reflexive,
symmetric and transitive.

Definition 8.3

Let < be a relation on a set A. We say that < is a preorder if < is reflexive and transitive. We
say that =< is a partial order if it is a preorder which is also antisymmetric. We say that < is a
total order if it is a partial order which is also total.

Definition 8.4

Let f a relation between two sets A and B. We say f is a function if for every a € A there is
a unique b € B such that (a,b) € f. It is customary to write f(a) = b when (a,b) € f if f is a
function.



The set A is the domain of f and B is the codomain of f. We express the idea that f is a
function with domain A and codomain B by writing f : A — B.
A function f : A — B is surjective or onto if for all b € B there is some a € A such that

b= f(a).
A function f : A — B is injective or one-to-one if whenever f(a;) = f(az2) then a; = as.
A function is bijective if it is both injective and surjective.

Theorem 8.1
Let f: A — B. Then f is bijective if and only if the inverse relation f~' is a function.

Definition 8.5
If f:A— B and X C B, we let

fUX)={ac A: f(a) € X}.

9 Equivalence Classes and Partitions

Definition 9.1
Let ~ be an equivalence relation on a set X. If x € X then the equivalence class of x is the set

(2] ={ye X :z ~y}.

If there is some confusion possible about the equivalence relation being used, we will write
[z]~ = [2].

Proposition 9.1
Let ~ be an equivalence relation on a set X. Then

(i) Let x € X. Then z € [z].

(ii)) Let x, y € X. Then x ~ y if and only if [x] = [y].
(iii) Let z, y, a € X. If x, y € [a] then x ~ y.
(iv) (2] N [y) £ 0 then [2] = [y).

Definition 9.2
Let X be a set. A partition P of X is a set of non-empty subsets of X which are pairwise disjoint,
and whose union is X.

The sets in P are called the parts of the partition.

Corollary 9.2
Let ~ be an equivalence relation on a set X. Then the set of equivalence classes, denoted X/ ~, is
a partition.

Theorem 9.3 P
Let P be a partition of a set X. Then the relation x = y if * and y are in the same part of P
(ie. there is some P € P such that x, y € P) is an equivalence relation.

Furthermore, the equivalence classes of this equivalence relation are precisely the parts of P.



10 Combinatorics

Theorem 10.1 (Multiplication Principle)
The number of lists of length k where the mth element is chosen from a set of n,, choices is

n1n2...nm...nk.

Corollary 10.2
If X1, Xo, ..., X}, are finite sets, then

‘Xl X X2 X o+ X Xk’ = ’XlH_XQ‘ s ‘Xk|

If X is a finite set, then
X = |1X]".

Definition 10.1
Let n and k be natural numbers. Then we define the falling factorial of n and k to be

n)g=nn—1)---(n—k+1).

In addition, we define (0); =0, (n)o = 1 and (0)y = 1.
The factorial of n is
nt=n(n—1)---3)(2)(1) = (n)n,

and
0!'=(0)g = 1.

Corollary 10.3
Let X be a finite set. The number of k-tuples of elements of X, where no element is repeated, is

(XD

Proposition 10.4
Let P ={Py,P,,..., Py} be a partition of a finite set X. Then

| X| = |P1| + |Pe| 4+ -+ | Pl

Corollary 10.5
Let P be a partition of a finite set X such that every part has the same size. Then

Pl = X]/|P]
for any part P € P.

Corollary 10.6
Let ~ be an equivalence relation on a finite set X such that every equivalence class has the same
size. Then the number of equivalence classes is

[ X/ ~ | = [X]/][«]]

for any z € X.
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Proposition 10.7
Let X be a finite set with | X| = n. Then the number of subsets of size k is

ny n!
k) (n — k)
Definition 10.2

A multiset is a collection of mathematical objects where repetition is allowed but order does not
matter. The order of an element of a multiset is the number of times it occurs in the multiset. The
cardinality of a multiset is the sum of the orders of its elements.

Given a collection of n objects, the number of multisets of size k that can be formed from those

n objects is denoted by
n
I .

n _(n+k-1\ (n+k-1)
k N k  (n—-D!
Proposition 10.9 (Inclusion-exclusion Principle)
If A1, Ao, ... A, are finite sets, then

U Ak =D 14l
k=1 k=1
-2

1=

Proposition 10.8

—_

n
‘Ak1ryAkA
ko=k1+1

X
—_

3
[\

n—1 n
+Z Z Z |Ag, N Ag, N Ay
k

1=1 ko=k1+1 ks=ka+1

n—j+1 n—j34+2 n

FEDTEY ST Y A nAgnen Ay

k1=1 ko=ki1+1 k‘j=k‘j,1+l

+ (D" A NA NN A,

or, more concisely,

n
SR>
Jj=1 SCH{1,..., n}
[S|=j

N 4

kesS

U
k=1
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Proposition 10.10
If f: A— B then:

(i) if f is surjective then |A| > |B]|.
(ii) if f is injective then |A| < |B].
(iii) if f is bijective then |A| = |B|.

Proposition 10.11 (Pigeonhole Principle)
If f : A — B is such that every b € B has no more than n elements a € A such that f(a) =b, then
|B| < |Aln.

Equivalently, if |B| > |A|n + 1 then there is some b such that there are at least n + 1 elements
a € A such that f(a) =b.

11 Number Theory

Theorem 11.1
Let a € Z, b € N. Then there are unique numbers q, r € 7 such that a = bg+r and 0 < r < b.

Definition 11.1
We call q the quotient and r the remainder or modulus of a divided by b. We define

adivb=q and a modb=r.

Definition 11.2
For n € N, we define Z, = {0,1,...,n — 1}. We define addition and multiplcation for Z,, by

a+b=(a+b) modn and axb=(axb) modn.

Proposition 11.2
For n € N and a € Z,, there is a unique element b € Z,, such that a +b =0 in Z,. We call b the
additive inverse of a, usually written —a.

We define subtraction in Z,, by a —b =a+ (—b) = (a — b) mod n.
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