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Introduction

This is a massive set of notes, so approaching this may be somewhat daunting.
It’s also somewhat incomplete, and I probably won’t be covering all of the
material in these notes in this class.

So here’s a general guide to what we’re going to be doing.
We’re going to start off covering Chapter 1 pretty much completely. There

isn’t much material that is missing from this chapter, and it’s the core of Math
707.

The next objective after that is to generalize measure and integration to
arbitrary σ-algebras. This requires a little topology, since many important
examples of σ-algebras are closely related to topological spaces. However, I
won’t be covering everything in the chapter on topology, and you’ll notice that
there are few or no proofs in that chapter, so it will of necessity be a fairly
shallow look at topology. I strongly encourage you to take a course in topology
at some point in your studies.

With topology out of the way, we can then define general σ-algebras, and
general measures on them, and define integrals using these measures in a way
which is analogous to Chapter 1. Most of the key results of Chapter 1 have
corresponding results, and we also get results about product spaces (giving
integration on Rn almost for free). Towards the end of this section, some of the
proofs are omitted, but hopefully I should have time to fill in the details before
we get to them in class.

The last part of the notes cover the theory of Lp spaces, which are proto-
typical Banach and Hilbert spaces. This is likely to be material which we cover
in 708, and a lot of this is concerned with verifying basic facts about certain
norms that were discussed in 458/658 last year, such as the fact that the triangle
inequality holds for them.

The appendices contain notation and basic definitions that you hopefully
have seen in undergraduate classes, but you may not have seen some of this dis-
cussion before. I’ll take time to discuss some of these issues in class, particularly
if people are confused about things. It’s worth noting that the definitions are
not restricted to just analysis, but also include some algebraic concepts which
are useful, particularly when we get to talking about Banach and Hilbert spaces.

iii
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Chapter 1

Lebesgue Measure on R

1.1 Introduction

In your study of integration, you should be aware that there are functions, like
the characteristic function of the rational numbers, χQ, which are not Riemann
integrable on any interval. This may seem to be a contrived example, but
functions like χQ which are discontinuous at every point are common in many
real-world applications. For example, a function giving the forces experienced
by a particle subject to Brownian motion would be discontinuous everywhere
and would almost certainly not be Riemann integrable. The same would be
true of functions which model “white noise” and functions which model static
in a communication channel. In fact, a strong argument can be made that
such nowhere-continuous functions are far more common than the elementary
functions you learned to integrate in calculus.

You may also know that the behaviour of the Riemann integral is not very
good when considering sequences of functions. You should know that uniform
limits of Riemann integrable functions preserve the integral, but pointwise limits
do not. While the previous problem may seem more important from a stand-
point of applying integration to models of the real world, the “bad” behaviour
of the Riemann integral when looking at sequences of functions is a more sig-
nificant stumbling block from the theoretical viewpoint.

The following example illustrates that at least some of the time, being able
to take pointwise limits would allow us to find integrals of more functions.

Example 1.1.1

You should know that the characteristic function of the rational numbers χQ
is not Riemann integrable on any interval.

However, observe that χQ is the pointwise limit of an increasing sequence of
functions χQn

, where
Qn = {qk : 1 ≤ k ≤ n}

1



2 Lebesgue Measure

Figure 1.1: A step function of the form described in Equation (1.1)

and {qn}∞n=1 = Q (for example, n 7→ qn could be an enumeration of the rational
numbers). We can check that ∫ b

a

χQn(x) dx = 0

for all n. It seems reasonable that the integral of χQ ought to be 0. 3

To overcome the problem, there are two basic approaches. One is to inves-
tigate what is happening in the limiting process to find a reasonable way to
extend the integral to more functions1. This involves learning at least enough
functional analysis to be able to talk about linear maps on vector spaces which
also have topology. While you will hopefully eventually study this theory, there
is an alternative way to approach the problem.

One way to think of the definition of the Riemann integral, is that we are
approximating the integrand f by step functions of the form

ϕ(x) =
n∑

k=1

cnχ[xn−1,xn)(x), (1.1)

where cn are constants (usually chosen so that cn = f(xn∗), for some xn∗ ∈
[xn−1, xn]), and P = {x0 < x1 < x2 < . . . < xn} is a partition of [a, b]. We can
easily integrate these simple functions ϕ∫ b

a

ϕ(x) dx =
n∑

k=1

cn(xk − xk−1),

1This method is sometimes called the Daniell integral, although it is completely equivalent
to the Lebesgue integral that we will discuss.

April 26, 2006 Version 0.8



1.1. Introduction 3

to get a Riemann sum. We hope that as the function ϕ approximates f better
and better, the Riemann sums converge to some number which is what we define
the Riemann integral of f to be.

This is deliberately vague, but it indicates a way forward. The integral of
ϕ is given by the sum of areas of the rectangles of the form [xk−1, xk) × [0, ck]
(see Figure 1.1). If we could replace the intervals [xk−1, xk) by more general
sets Ek, then we could replace the area of the rectangles by the areas of the sets
Ek × [0, ck].

More generally, if we were integrating a function f : Rn → R in some box,
the Riemann sum uses the volumes of boxes of the form form [x1

k1−1, x
1
k1

) ×
[x2

k2−1, x
2
k2

)×· · ·× [xn
kn−1, x

n
kn

)× [0, c), and would hope to replace these by sets
of the form E × [0, c), where E ⊆ Rn and then the volume of this set would be
the volume of E times c.

In a perfect world, this would work for any set E ⊂ Rn. The world is not
perfect, but it does give us our first objective: we want to measure the “size”,
or “volume”, of an arbitrary set.

In other words, we would like to abstract the idea of “area,” “volume,” or
“length” in much the same way that a metric abstracts the idea of distance, or
a norm abstracts the idea of the length of a vector. In other words we would
like to find some simple axioms which we can work with to prove basic facts
which match our intuition about volumes.

To simplify discussion, we’ll talk in terms of volume, although it should
be readily apparent that these ideas apply to more than just volume. A little
thought should tell you that there are some basic properties which should hold
for a good definition of volume:

1. the volume of a set is at least 0, and a set can have infinite volume.

2. The volume of the empty set is 0.

3. Given a countable collection of disjoint sets, the volume of the union is
the sum of the volume of each set.

4. Given two sets which are not disjoint, the volume of their union is the
sum of the volumes, less the volume of the intersection (providing that
the volume of the intersection is finite). This is the “inclusion-exclusion”
principle which should be familiar from your undergraduate work.

5. The volume of a subset is less than or equal to the volume of the set which
contains it.

6. In Rn the volume of a box is the product of the side lengths.

7. The volume of a set is invariant under translations, rotations and reflec-
tions.

Letting m(E) denote the “volume” of the set E, we can translate these into
the following mathematical conditions:

April 26, 2006 Version 0.8



4 Lebesgue Measure

1. m is a function from sets to [0,∞]. Note:: since m can take the
value +∞ on some sets, and we
want to at least be able to add
values, we have to use the rules
for extended real numbers as
discussed in Section A.2.

2. m(∅) = 0.

3. Given disjoint sets E1, E2, . . . , Ek, . . .,

m

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek).

4. If m(E ∩ F ) <∞, then m(E ∪ F ) = m(E) +m(F )−M(E ∩ F ).

5. If E ⊆ F , then m(E) ≤ m(F ).

6. If Ik is an interval from ak to bk, m(I1 × I2 × · · · × In) =
∏n

k=1 |bk − ak|.

7. If u : Rn → Rn is an isometric transformation (ie. a translation, rotation,
reflection or combination thereof), then m(u(E)) = m(E).

The third statement is probably the most controversial: why countable col-
lections? Hopefully you would agree with the statement for finite collections of
sets. It is easy to see that it is quite unreasonable for uncountable collections:
consider the singleton sets {x} where x ∈ R; they are disjoint, have no volume,
yet their union has infinite volume. Countable disjoint unions of sets are rea-
sonable at least some of the time, however. We know, for example, that the
sets Un = [2−n−1, 2−n) for n = 1, 2, . . . ,∞ have volume 2−n−1, are disjoint, and
their union is the open interval (0, 1) and we know that

∞∑
n=1

2−n−1 = 1 = m((0, 1)).

Hopefully this quick example convinces you that countability is at least a rea-
sonable thing to want.

In any case, these are good starting points. Unfortunately, there is one
severe problem: this “volume” m cannot possibly be defined for all sets. In
fact, working with just R and only four of the assumptions:

1. m : P(R) → [0,∞]

2. if E1, E2, . . . are disjoint subsets of R, then

m(E1 ∪ E2 ∪ . . .) = m(E1) +m(E2) + . . . .

3. m([0, 1)) = 1.

4. If E and F are subsets of R which are congruent under translation and/or
reflection (ie. “length-preserving” transformations), then m(E) = m(F ).

April 26, 2006 Version 0.8



1.1. Introduction 5

Figure 1.2: The transformation of N to Nq from Example 1.1.2

we can get a contradiction.

Example 1.1.2
Consider an equivalence relation on [0, 1) where x ∼ y iff x− y ∈ Q. So, for

example, all rational numbers are equivalent to each other. But 1/π and 1/
√

2
are not.

Let N be a subset of [0, 1) consisting of one representative from each equiv-
alence class under ∼.

Now for every rational number q ∈ Q = [0, 1) ∩Q, let

Nq = {x+ q : x ∈ N, 0 ≤ x < 1− q} ∪ {x− (1− q) : x ∈ N, 1− q ≤ x < 1},

ie. to get Nq, shift N ∩ [0, 1− q) q units to the right and shift N ∩ [1− q, 1) left
by 1− q units, and take the union (see Figure 1.1). One can show that given q,
r ∈ Q, with q 6= r, that Nq and Nr are disjoint. (See Section 1.11 for the proof
of this claim.)

Let y ∈ [0, 1). Then by construction, there is a unique x ∈ N such that
x ∈ [y], so by the definition of equivalence, y−x is a rational number. If y ≥ x,
then let q = y − x ∈ Q, so that 1 − q = 1 − (y − x) = x + (1 − y) > x and
y = x + q, from which we conclude that y ∈ Nq. On the other hand, if y < x,
then let q = 1 − (x − y), so that 1 − q = x − y ≥ x and y = x − (1 − q), from
which we conclude that y ∈ Nq. So every y ∈ [0, 1) lies in Nq for some q ∈ Q.

Therefore [0, 1) =
⋃

q∈QNq, and the Nq are disjoint. In other words, [0, 1)
is a countable disjoint union of the sets Nq.

Now by the disjoint union property of m,

m(Nq) = m(Nq ∩ [0, q)) +m(Nq ∩ [q, 1)).

April 26, 2006 Version 0.8



6 Lebesgue Measure

Since Nq ∩ [1 − q, 1) is the set N ∩ [0, 1 − q) translated right by q units, and
Nq ∩ [0, q) is the set N ∩ [1− q, 1) translated left by 1− q units, we have by the
translation property

m(Nq∩ [0, q)) = m(N ∩ [1−q, 1)) and m(Nq∩ [q, 1)) = m(N ∩ [0, 1−q)).

Therefore, using the disjoint union property once more,

m(Nq) = m(N ∩ [1− q, 1)) +m(N ∩ [0, 1− q)) = m(N).

Now, since [0, 1) is the disjoint union of the sets m(Nq) for q ∈ Q, we
conclude that.

m([0, 1)) =
∑
q∈Q

m(Nq) =
∑
q∈Q

m(N).

Now either, m(N) = 0, in which case m([0, 1)) = 0; or m(N) > 0, in which
case m([0, 1)) = ∞. Either way, this contradicts our third assumption that
m([0, 1)) = 1.

So there is no such volume function m. 3

One thing to note is that this construction depends upon the axiom of choice:
to get the set N we are choosing an element from each of an uncountable col-
lection of equivalence classes. The fact that you probably didn’t notice that the
axiom of choice was being used might indicate that it’s not an unreasonable
axiom. However, if you deny the axiom of choice and equivalent axioms, you
don’t have these problems. In this course, we will use the axiom of choice from
time to time, because it is a well-accepted part of standard analysis.

Our solution to the problem, then, is to avoid sets like N from the above
example. We want to find a class of sets which includes all “reasonable” sets
(like Q, and “fractal” sets), but avoids bad sets like N . The way that we will
do this is by building up from sets we know are safe: intervals.

Exercises

1.1.1. Show that χQ is not Riemann integrable. Show that the functions χQn

of Example 1.1.1 converge pointwise to χQ. Show that∫ b

a

χQn
(x) dx = 0.

1.1.2. Find Riemann integrable functions fn which converge pointwise to some
Riemann integrable function f , but for which

lim
n→∞

∫ b

a

fn(x) dx 6=
∫ b

a

f(x) dx.

April 26, 2006 Version 0.8



1.1. Introduction 7

1.1.3. Let fn be an increasing sequence of Riemann integrable functions, and
let fn converge to f pointwise, where f is also Riemann integrable. Show
that

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.

1.1.4. Find another function which is not Riemann integrable.

1.1.5. Let f be a Riemann integrable function on [a, b]. Let F be the set of all
step functions of the form given by (1.1). Show that∫ b

a

f(x) dx = sup

{∫ b

a

ϕ(x) dx : ϕ ∈ F , ϕ ≤ f

}
.

and ∫ b

a

f(x) dx = inf

{∫ b

a

ϕ(x) dx : ϕ ∈ F , ϕ ≥ f

}
.

1.1.6. Show that if f is Riemann integrable on [a, b], then one can find an
increasing sequence ϕn of step functions of the form given by (1.1) with
ϕn ≤ f such that ϕn → f pointwise, and∫ b

a

f(x) dx = lim
n→∞

∫ b

a

ϕn(x) dx.

1.1.7. Find a sequence ϕn of step functions of the form given by (1.1) which
converge pointwise to a Riemann integrable function f , but for which

lim
n→∞

∫ b

a

ϕn(x) dx 6=
∫ b

a

f(x) dx.

1.1.8. Let f(x) = 1/
√
x on (0, 1] and f(0) = 0. Show that f(x) is Riemann

integrable. Show that f cannot be a uniform limit of step functions of the
form given by (1.1).

1.1.9. Show that the relation x ∼ y iff x − y ∈ Q from Example 1.1.2 is an
equivalence relation as claimed.

1.1.10. Based on the proposed properties we want for the volume of a set, what
should the volume of Q be?

Notes: Exercise 1.1.8 shows that uniform limits of step functions are too weak
to give us all Riemann integrable functions; Exercise 1.1.7 shows that pointwise
limits of step functions are strong enough to give us all Riemann integrable
functions as limits of step functions, but integrals are not preserved by them;
but Exercises 1.1.3 and 1.1.6 shows that increasing pointwise limits of step
functions are nicely behaved.

Some of these exercises are quite hard.
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8 Lebesgue Measure

1.2 Measures and σ-Algebras

For the rest of this section we will just work with R, as opposed to Rn for
simplicity. However, we will still say that we are trying to measure the “volume”
of a set in R, even though it is more properly some sort of “total length,” because
volume gives a better mental image of the properties we want.

We start be defining a class of sets for which we know we can safely define
the volume: finite unions of intervals.

An interval in R, is a connected subset of R. In other words it is a set of
the form (a, b), (a, b], [a, b), [a, b], (−∞, b), (−∞, b], (a,∞), [a,∞) or (−∞,∞),
where a, b ∈ R and a ≤ b. We let I be the collection of all intervals.Note:: the definition of an

interval includes the empty set as
a trivial interval of the form
(a, a). This makes many
arguments easier, as we don’t
have to consider the empty set as
a special case.

Definition 1.2.1
A subset of R is elementary if it is a finite union of intervals. Let E be the
collection of all elementary subsets of R.

Note that any set which can be written as a finite union of intervals can be
written as a finite union of disjoint intervals: if two intervals are not disjoint,
then their union is an interval, and so they can be replaced by their union.
Indeed, we can assume that the union is minimal in the sense that there is no
pair of intervals in the union whose union is again an interval.

We also note the following:

Proposition 1.2.1
If A and B are elementary sets, then so are A ∪B, A ∩B and Ac.

Proof:
Let A = I1 ∪ . . . ∪ In and let B = J1 ∪ . . . ∪ Jm be representations as finite

unions of intervals. Then clearly A ∪ B = (I1 ∪ . . . ∪ In) ∪ (J1 ∪ . . . ∪ Jm) is a
finite union of intervals.

We note that Ik ∩ Jl is always an interval (although it may often be the
empty set), and using the distributive law for unions and intersections, we have

A ∩B =
n⋃

k=1

m⋃
l=1

Ik ∩ Jl.

Hence A ∩B is a finite union of intervals.
Finally, note that if Ik has left endpoint ak and right endpoint bk, then Ic

k

is the union of two intervals: one of the form (−∞, ak), (−∞, ak] or the empty
set (if ak = −∞); and the other of the form (bk,∞), [bk,∞) or ∅ (if bk = ∞).
Now DeMorgan’s law tells us that

Ac = (I1 ∪ . . . ∪ In)c = Ic
1 ∩ Ic

2 ∩ . . . ∩ Ic
n.

So Ac is a finite intersection of elementary sets. Repeated application of the
previous part shows us that Ac must therefore be an elementary set.

April 26, 2006 Version 0.8



1.2. Measures and σ-Algebras 9

In fact, you can prove the last part of this result directly because by per-
muting the order of the sets Ik, we can always ensure that if the endpoints of
Ik are ak and bk then

−∞ ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn ≤ ∞.

It is then easy to see that Ac is the union of the intervals that lie between one
interval of A and the next. Once we know A∪B and Ac are elementary, we can
show that A ∩B is also elementary by noting that DeMorgan’s law tells us

A ∩B = (Ac ∪Bc)c.

So in looking for an axiomatisation of things like E , we really only need
unions and complements:

Definition 1.2.2
A family A of subsets of R is an algebra if R ∈ A, and whenever A, B ∈ A, Note: There’s no reason we need

to restrict ourselves to subsets of
R, as we will see later.

Note: when we need to
distinguish an algebra in this
sense from the linear algebra
definition of an algebra (a vector
space which has a consistent ring
structure), we will call this sort
of algebra a set algebra. Some
texts call an algebra a field of
sets. Also, some references work
with a slightly more general
object, called a ring which
doesn’t require that R is in the
ring, and instead of requiring
that Ac is in the ring, requires
that A \B is in the ring.

then A ∪B and Ac are both in A.

So Proposition 1.2.1 showed that E is an algebra of sets. We can also see that
intersections of sets in an algebra must be in the algebra for the same reason it
happens in E . Indeed it is easy to show that if A and B are sets in an algebra,
then A \ B and A 4 B are in the algebra as well (see Exercise 1.2.1). These
facts can often simplify arguments. To summarise:

Proposition 1.2.2
If A is an algebra, and A, B ∈ A, then ∅, A ∩B, A \B and A4B ∈ A.

Since we want to be able to deal with countable unions of intervals, rather
than finite ones, we are led to the following definition.

Definition 1.2.3
A family of sets M is an σ-algebra if R ∈ M, if whenever Ai ∈ M, for i ∈ N,
then

∞⋃
k=1

Ak ∈M,

and if A ∈M, then Ac ∈M.

Two examples of σ-algebras are P(R), the power set of R, and {∅,R}, the
trivial σ-algebra. E , however, is not a σ-algebra.

Since a σ-algebra is an algebra, Proposition 1.2.2 still holds. We can go a
little further with intersections, however.

Proposition 1.2.3
Let A be a σ-algebra. If Ak ∈ A for k ∈ N, then

∞⋂
k=1

Ak

is in A.
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10 Lebesgue Measure

Proof:
Since DeMorgan’s law holds for countable intersections and unions,

∞⋂
k=1

Ak =

( ∞⋃
k=1

Ac
k

)c

.

Since A is an algebra, Ac
k ∈ A, and so we have expressed the intersection as

the complement of a countable union of elements of A. Therefore the set is an
element of the σ-algebra.

At this point it is worthwhile noting that although the definition of a σ-
algebra requires closure of the family under arbitrary countable unions, we only
need closure under countable disjoint unions.

Lemma 1.2.4
Let A be an algebra which is closed under disjoint countable unions, ie. given
any family of sets Ak ∈ A such that Ak ∩ Al = ∅ for k 6= l, the union of these
sets is in the algebra. Then A is a σ-algebra.

Proof:
Assume Ak ∈ A be a countable collection of sets in the algebra which areStrategy: we are creating a

disjoint union from an arbitrary
union by letting Bk be the “new”
points added by Ak to the union.
We need to show that these sets
are in the σ-algebra, and that
their union is the same as the
union of the Ak.

not necessarily disjoint. Given the union of A1 through Ak−1, let Bk be the set
of elements of Ak which are not in the union, ie.

Bk = Ak \
k−1⋃
i=1

Ai = Ak ∩

(
k−1⋃
i=1

Ai

)c

.

So Bk lies in A, since it is built from complements, finite intersections and finite
unions of sets in the algebra A. Also, by construction, the sets Bk and Bl are
disjoint. We also note that because X ∪ Y = (X \ Y ) ∪ Y , we have that

k⋃
l=1

Bk =
k⋃

l=1

Ak.

Finally, given any point x in the union of all the Ak, we must have x ∈ Ak

for some k. Hence x ∈ Bl for some l ≤ k, and so

∞⋃
l=1

Ak ⊆
∞⋃

l=1

Bk.

Similarly, any point x in the union of all the Bk must be in at least one set Bk,
and so x ∈ Ak, which means

∞⋃
l=1

Bk ⊆
∞⋃

l=1

Ak.
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1.2. Measures and σ-Algebras 11

Therefore
∞⋃

l=1

Ak =
∞⋃

l=1

Bk.

So we have written an arbitrary countable union as a countable disjoint union,
and so the countable union must be an element of the algebra. Hence A is a
σ-algebra.

This little lemma is very useful for proving that a family of sets is in fact
a σ-algebra. The strategy will be to first show that the family is an algebra,
then to show that it is closed under countable disjoint unions and then use the
lemma to get the final result.

We can now begin to define our volume function. Given any E ∈ E , we have
E = I1 ∪ I2 ∪ . . . ∪ In where the Ik are intervals which are pairwise disjoint.
If the left and right endpoints ak and bk (respectively), we define the function
m : E → [0,∞] by

m(E) =
n∑

k=1

bk − ak.

Clealy, if I is an interval with left and right endpoints a and b (respectively),
we have m(I) = b− a (ie. the length of the interval I), and so we could write

m(E) =
n∑

k=1

m(Ik)

instead.
There is one technical consideration that we need to worry about with this

definition. A set E ∈ E can potentially be given by many different unions of
disjoint intervals. It ought to be the case that the value of m does not depend
upon the choice of intervals.

Lemma 1.2.5
The function m : E → [0,∞] is well-defined. That is, if E ∈ E with E =
I1 ∪ I2 ∪ . . . ∪ In = J1 ∪ J2 ∪ . . . ∪ Jp, then

n∑
k=1

m(Ik) =
p∑

l=1

m(Jk).

This fact is intuitively obvious, but a full proof is fairly technical and picky,
and not particularly enlightening. For this reason, the proof is given in Sec-
tion 1.11.

Our ultimate objective is to extend our function m to some σ-algebra con-
taining E . Again, we want to give some axiomatic definitions. We observe that
this function has two key properties:

Proposition 1.2.6
If A and B ∈ E are two disjoint sets, then

m(A ∪B) = m(A) +m(B).

April 26, 2006 Version 0.8



12 Lebesgue Measure

Also m(∅) = 0.

Proof:
Let A = I1 ∪ I2 ∪ . . .∪ In be a disjoint union, and B = J1 ∪ J2 ∪ . . .∪ Jm be

a disjoint union. Then

A ∪B = (I1 ∪ I2 ∪ . . . ∪ In) ∪ (J1 ∪ J2 ∪ . . . ∪ Jm),

and since A and B are disjoint, Ik and Jl are disjoint for all k and l, so this is
a disjoint union of intervals. Therefore

m(A ∪B) = m(I1) +m(I2) + · · ·+m(In) +m(J1) +m(J2) + · · ·+m(Jm)
= m(A) +m(B).

We also have ∅ = (a, a), so m(∅) = a− a = 0.

This leads us to the following definitions:

Definition 1.2.4
A function whose domain is an algebra is called a set function. A set functionNote: A measure satisfies

conditions 1, 2 and 3 from
Section 1.1. The set function m
is defined by condition 7. The
remaining properties will be
consequences of these
assumptions.

µ : A → [0,∞] is additive if given two disjoint sets A, B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

A set function on a σ-algebra A is σ-additive (or countably additive) if given
Ai ∈ A, for i ∈ N, with the Ai disjoint,

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

A σ-additive set function for which µ(∅) = 0 is called a measure.

So from our previous discussion, m : E → [0,∞] is additive, and satisfies
m(∅) = 0. Clearly, what we want is a measure based on m, but we don’t have
a candidate σ-algebra yet, nor if we did is there a clear way to extend m.

Exercises

1.2.1. (†) If A is an algebra of sets, and A, B ∈ A, show that ∅ ∈ A, A ∩ B,
A \B ∈ A and A4B ∈ A. If A is a σ-algebra, and Ak ∈ A for all k ∈ N,
show that

∞⋂
k=1

Ak ∈ A.

1.2.2. A subset of R is cofinite if its compliment is a finite set. Let F be the
family of all subsets of R which are either countable or co-countable. Show
that F is an algebra.
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1.3. Properties of Measures 13

1.2.3. (†) A subset of R is co-countable if its compliment is a countable set.
Let C be the family of all subsets of R which are either countable or
co-countable. Show that C is a σ-algebra. (Hint: countable unions of
countable sets are still countable.)

1.2.4. Let C be as in the previous exercise. Show that the set function µ : C →
[0,∞] defined by

µ(X) =

{
0 if X countable
∞ if X co-countable

is a measure.

1.2.5. (†) Show that P(R) is a σ-algebra. Show that the set function

c(X) =

{
|X| for X finite,
∞ for X infinite

is a measure on P(R).

1.2.6. An algebra A in Rn satisfies the same axioms as an algebra in R, except
that we insist that Rn ∈ A. A box in Rn is a Cartesian product of
intervals I1 × I2 × . . .× In.

Show that the family En of all finite unions of boxes is an algebra.

Let mN be the set function mn : En → [0,∞] given by mn(I1 × I2 × . . .×
In) = m(I1)m(I2) . . .m(In), and mN (E) = m(B1)+m(B2)+ . . .+m(Bn),
where E is a disjoint union of the boxes B1, B2, . . .Bn. Show that mn is
additive on E .

1.2.7. Let A and B be algebras. Prove that A ∩ B is also an algebra.

Let A and B be σ-algebras. Prove that A ∩ B is also a σ-algebra.

Let I be an aribrary index set, and let Aα be a σ-algebra for all α ∈ I.
Prove that ⋂

α∈I

Aα

is also a σ-algebra.

1.2.8.

1.3 Properties of Measures

In Section 1.1 we gave a list of conditions which a reasonable measure of volume
should satisfy. By definition, a measure satisfies the first three of these con-
ditions, but we can use these three to prove most of the remaining conditions
without any more theory.

We start with the fifth of these conditions, as it is the easiest to prove, and
is used in the proof of the others:
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14 Lebesgue Measure

Proposition 1.3.1
If A is an algebra, and µ is an additive set function on A, then if A and B ∈ A,
and A ⊆ B,

µ(A) ≤ µ(B).

Proof:
If A ⊆ B, then we can writeStrategy: The basic strategy

here, and in many proofs with
measures, is to break the sets we
are interested in into disjoint
unions of other sets, so we can
use additivity of the measure.

B = A ∪ (B \A).

By Exercise 1.2.1, we know that B \A ∈ A and A and B \A are disjoint. So

µ(B) = µ(A) + µ(B \A).

Since m is always at least 0, we have that µ(A \B) ≥ 0, and so

µ(B) ≥ µ(A).

The fourth condition follows easily from the previous result.

Proposition 1.3.2
If A is an algebra, and µ is an additive set function on A, then if A and B ∈ A,
and µ(A ∩B) <∞,

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Proof:
For simplicity, assume that µ(A), µ(B) < ∞ (see Exercise 1.3.1 for the

infinite case). Clearly, we can write A ∪B as a disjoint union:

A ∪B = (A \B) ∪ (A ∩B) ∪ (B \A).

By Exercise 1.2.1, we know that A \B and B \A ∈ A, so that

µ(A ∪B) = µ(A \B) + µ(A ∩B) + (B \A).

However, we also have that A = (A \B) ∪ (A ∩B) and B = (B \A) ∪ (A ∩B),
and both unions are disjoint. Therefore

µ(A) = µ(A \B) + µ(A ∩B) and µ(B) = µ(B \A) + µ(A ∩B),

and therefore

µ(A) + µ(B)− µ(A ∩B) = µ(A \B) + µ(A ∩B)+
µ(B \A) + µ(A ∩B)− µ(A ∩B)

= µ(A \B) + µ(A ∩B) + µ(B \A)
= µ(A ∪B),
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1.3. Properties of Measures 15

as required.

There is another condition which was not listed earlier, but which is useful
on occasion. You can think of this as a continuity condition which tells us that
the measure of the union of an increasing sequence of sets is equal to the limit
of their measures. The proof uses the fact that we can break a union of sets
into a disjoint union of sets in the same way that we did in Lemma 1.2.4.

Proposition 1.3.3
Let A be a σ-algebra, and µ a σ-additive set function on A. If Ak, k ∈ N, is a
sequence of sets in A with Ak−1 ⊆ Ak, then

µ

( ∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak).

Proof:
Let Strategy: this uses the same

strategy as Lemma 1.2.4, of
looking at sets of new points
added by each Ak.

Bn = An \

(
n−1⋃
k=1

Ak

)
.

Again, by Exercise 1.2.1, we have that Bn ∈ A, and by following the strategy
of the proof of Lemma 1.2.4,

n⋃
k=1

Ak =
n⋃

k=1

Bk.

and
∞⋃

k=1

Ak =
∞⋃

k=1

Bk.

Now since Ak ⊆ An for all k ≤ n,

An =
n⋃

k=1

Bk.

Furthermore, the Bk are disjoint, so we have

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Bk)

= lim
n→∞

n∑
k=1

µ(Bk)

= lim
n→∞

µ(An),

as required.
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16 Lebesgue Measure

You will notice that these results in no way used the fact that we are con-
sidering any particular measure, or an algebra living in any particular set. This
fact will be very important when we start talking about general measures. The
remaining two conditions which we discussed, however, are very specific to mod-
elling a measure on Rn which gives the volume of sets. We cannot prove (or
even state) those in a general setting, and must instead construct a particular
measure for which we will prove the results.

Exercises

1.3.1. Complete the proof of Proposition 1.3.2 for the cases where one or both
of µ(A) and µ(B) are infinite.

1.3.2. Show that if A is a σ-algebra and µ is a measure on A, then µ(A4B) =
µ(A \B) + µ(B \A) for all A, B ∈ A.

1.3.3. (†) Show that if A is a σ-algebra, µ is a measure on A, and Ak, k ∈ N, is
a sequence of sets in A with Ak ⊆ Ak−1, and µ(Ak) <∞ eventually, then

µ

( ∞⋂
k=1

Ak

)
= lim

k→∞
µ(Ak).

1.3.4. (†) Let m be a measure on a σ-algebra A. A null set is a set A ∈ A for
which m(A) = 0. Show that if A =

⋃∞
i=1Ai and Ai are all null then so is

A.

1.4 Outer Measure

Although we can’t extend m to a σ-additive measure on P(R), we can do some-
thing a little weaker, but nearly as useful. Our strategy is to extend m to
something which is sub-additive on P(R), and then try to identify sets where it
is actually σ-additive.

Definition 1.4.1
A set function µ∗ : P(R) → [0,∞] is an outer measure if µ∗(∅) = 0, µ∗(A) ≤
µ∗(B) for all A ⊆ B, and

µ∗

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ∗(Ai).

In other words, if we can’t get σ-additivity, we can try to get at least sub-
additivity.

Definition 1.4.2
For any A ⊂ R, let

m∗(A) = inf

{ ∞∑
k=1

m(Ak) : Ak ∈ E , A ⊆
∞⋃

k=1

Ak

}
.
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B0

B1

B2

B3

B4

B5

...
...

...
...

C

Figure 1.3: Constructing the Cantor Set

This set function is called the Lebesgue outer measure.

In other words, to calculate the Lebesgue outer measure of a set A, we cover
A by elements of E and take the infimum of the total volumes of these covers.
Intuitively, we are approximating the set A by countable unions of elements of
E and use these to find an upper bound for the volume of A.

We note immediately, that since each Ak is a finite union of intervals, we
have

m∗(A) = inf

{ ∞∑
k=1

m(Ik) : Ik ∈ I, A ⊆
∞⋃

k=1

Ik

}
.

Indeed, since the intersection of two intervals is again an interval, the intervals
Ik can be chosen to be disjoint. The reason for the more general definition, is
that it is the way we will define outer measures in more general settings.

Example 1.4.1
The following is an example of how you can calculate m∗ of a non-trivial

set from first principles.
The Cantor set C is the set obtained by taking the interval [0, 1], removing

the open middle third of the interval, ie. the set (1/3, 2/3), to obtain [0, 1/3] ∪
[2/3, 1], removing the open middle third of of each of these two intervals to get

[0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

and so on and so forth. The Cantor set C is the set obtained in the limit.
More formally, let B0 = [0, 1], B1 = [0, 1/3] ∪ [2/3, 1], B3 = [0, 1/9] ∪

[2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and so on. Then

C =
∞⋂

k=1

Bk.
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18 Lebesgue Measure

Another way of thinking of this set is by recognising that every number in Note: This is representing every
number in [0, 1] as a base 3
“decimal”.

the interval [0, 1] can be represented by a sum
∑∞

i=1 ai3−i where ai ∈ {0, 1, 2}.
C is the set of numbers which can be represented by a sequence where ai 6= 1 for
all i. The equivalence between these two ways of thinking of C follows because
the first middle third, (1/3, 2/3), is the set of all numbers for which a1 = 1;
the next middle thirds, (1/9, 2/9) and (7/9, 8/9) are the remaining numbers for
which a2 = 1; and so on.

The Cantor set is a good starting point for certain types of counter examples.Note: We’ll examine these
topological properties more
closely in Chapter 2

It can be shown that it is a closed and bounded (ie. compact) subset of R whose
interior is empty. In other words, it is a set which is “all boundary.”

The Cantor set is uncountable, since we can define a function ψ : C → [0, 1]
by taking a point x =

∑∞
i=1 ai3−i to

ψ(x) =
∞∑

i=1

ai

2
2−i.

We claim the function ψ is a surjection. Since every number y in [0, 1] can be
represented as a sum of the form y =

∑∞
i=1 bi2

−i, where bi ∈ {0, 1}, we note
that the point x =

∑∞
i=1(2bi)3

−i lies in the cantor set, and that ψ(x) = y. Since
ψ is a surjection onto an uncountable set, C is uncountable.

We will now calculate m∗(C). Notice that C ⊂ Bk for all k, and that Bk

is a union of intervals, and hence a cover of C of the form we wish to consider.
More concretely,

m∗(C) = inf

{ ∞∑
k=1

m(Ik) : Ik ∈ I, C ⊆
∞⋃

k=1

Ik

}
≤ inf {m(Bk) : k ∈ N}

Now the set Bk is a disjoint union of 2k intervals, each of length 3−k, som(Bk) =
(2/3)k. Since m∗(C) is an infimum taken over a set of non-negative numbers,

0 ≤ m∗(C) ≤ inf {m(Bk) : k ∈ N} = 0.

Hence m∗(C) = 0. 3

We now justify calling m∗ the Lebesgue outer measure.

Proposition 1.4.1
The function m∗ is an outer measure.

Proof:
First note that ∅ ∈ E , so 0 ≤ m∗(∅) ≤ m(∅) = 0.Strategy: We use two standard

“tricks” of proofs in analysis:
1. if for each n and any εn > 0

we can find xn ≤ yn + εn, then
by choosing εn = 2−nε we getP

xn ≤
P

yn + ε.
2. if x ≤ y + ε for all ε > 0, then

x ≤ y.

Next observe that if A ⊆ B, then whenever B ⊆
⋃∞

k=1Bk we automatically
have A ⊆

⋃∞
k=1Bk, and hence{ ∞∑

k=1

m(Ak) : Ak ∈ E , A ⊆
∞⋃

k=1

Ak

}
⊇

{ ∞∑
k=1

m(Bk) : Bk ∈ E , B ⊆
∞⋃

k=1

Bk

}
.
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1.4. Outer Measure 19

Therefore

m∗(A) = inf

{ ∞∑
k=1

m(Ak) : Ak ∈ E , A ⊆
∞⋃

k=1

Ak

}

≤ inf

{ ∞∑
k=1

m(Bk) : Bk ∈ E , B ⊆
∞⋃

k=1

Bk

}
= m∗(B).

Let {Ak}∞k=1 ⊆ P(R). From the definition of m∗ and basic facts about
infima, we have that for any ε > 0 we can find Bk,j ∈ E (with the choice of sets
depending on choice of ε) such that

Ak ⊆
∞⋃

j=1

Bk,j

and
∑∞

j=1m(Bk,j) ≤ m∗(Ak) + 2−kε. Now

∞⋃
k=1

Ak ⊆
∞⋃

k,j=1

Bk,j

which means that Note: The order of summation
can safely be changed since all
the term are non-negative and so
the series converges absolutely or
diverges to +∞.

m∗

( ∞⋃
k=1

Ak

)
≤

∞∑
k,j=1

m(Bk,j)

≤
∞∑

k=1

∞∑
j=1

m(Bk,j)

≤
∞∑

k=1

(
m∗(Ak) + 2−kε

)
=

( ∞∑
k=1

m∗(Ak)

)
+ ε.

But since we can do this for any ε > 0 (albeit with possibly different Bk,j), we
have

m∗

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

m∗(Ak)

as required.

For elementary sets E ∈ E , m∗(E) = m(E). This relies on the intuitively
plausible, but somewhat technical proposition that if you partition an interval
into a countable collection of subintervals, the length of the interval is the sum
of the lengths of the subintervals.
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20 Lebesgue Measure

Lemma 1.4.2
If I ∈ I and I =

⋃∞
k=1 Ik where the Ik are pairwise disjoint, then

m(I) =
∞∑

k=1

m(Ik).

This lemma is formally proved in Section 1.11.

Example 1.4.2
The outer measure m∗(I) of an interval I is m(I).
Clearly m∗(I) ≤ m(I), since I is an elementary set.
On the other hand, if I ⊆

⋃∞
k=1 Ik, where the sets Ik are intervals, we let

E1 = I1 ∩ I, and

Ek =

Ik \ k=1⋃
j=1

Ij

 ∩ I.

Therefore m(Ek) ≤ m(Ik), Ek are pairwise disjoint, and

∞⋃
k=1

Ek =

( ∞⋃
k=1

Ik

)
∩ I = I

Furthermore, each set Ek can be written as a finite union of intervals Jk,l, where
these intervals are pairwise disjoint. So

∞∑
k=1

m(Ik) ≥
∞∑

k=1

m(Ek) ≥
∞∑

k=1

nk∑
l=1

m(Jk,l)

and
∞⋃

k=1

nk⋃
j=1

Jk = I.

So by Lemma ??, we have

∞∑
k=1

m(Ik) ≥
∞∑

k=1

nk∑
l=1

m(Jk,l) = m(I).

and we are done. 3

The fact that m∗(E) = m(E) follows from this example and Carathéodory’s
Theorem (Theorem 1.4.3).

We now want to identify the family of sets for which this outer measure
behaves like a measure, with the aim that restricting the outer measure to these
“good” sets will make it a measure. In particular, we want to rule out sets like
the set N discussed earlier.
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1.4. Outer Measure 21

Definition 1.4.3
If µ∗ is an outer measure, a set A is µ∗-measurable if

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac).

for every subset E of R.

From the definition of outer measure we automatically have

µ∗(E) ≤ µ∗(E ∩A) + µ∗(E ∩Ac)

so we only need check that

µ∗(E) ≥ µ∗(E ∩A) + µ∗(E ∩Ac) (1.2)

to prove a set is µ∗-measurable.

Theorem 1.4.3 (Carathéodory)
Let µ∗ be an outer measure. Then the family M of µ∗-measurable sets is a
σ-algebra, and the restriction of µ∗ to M is a measure.

Proof:
First we will show that M is an algebra. Immediately we notice that if Strategy: we want to use

Lemma 1.2.4 to prove that M is
a σ-algebra, so we need to show
that it is an algebra by checking
the axioms, and we need to show
that it is closed under disjoint
unions.

A is µ∗-measurable then so is Ac, since the definition of µ∗-measurability is
symmetric. Now if A and B are in M, for any E we have

µ∗(E) = µ∗(E ∩A) + µ∗(E ∩Ac)
= µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc)

+ µ∗(E ∩Ac ∩B) + µ∗(E ∩Ac ∩Bc).

Now (E ∩A ∩B) ∪ (E ∩A ∩Bc) ∪ (E ∩Ac ∩B) = E ∩ (A ∪B), so

µ∗(E ∩ (A ∪B)) ≤ µ∗(E ∩A ∩B) + µ∗(E ∩A ∩Bc) + µ∗(E ∩Ac ∩B)

and therefore

µ∗(E) ≥ µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c).

and hence A ∪B ∈M. Hence M is an algebra.
Now assume that we have a countable collection Ak of disjoint sets in M.

Let Bn =
⋃n

k=1Ak and B =
⋃∞

k=1Ak. Given any set E we have

µ∗(E ∩Bn) = µ∗(E ∩Bn ∩An) + µ∗(E ∩Bn ∩Ac
n)

= µ∗(E ∩An) + µ∗(E ∩Bn−1)

and so by induction

µ∗(E ∩Bn) =
n∑

k=1

µ∗(E ∩Ak).
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Therefore

µ∗(E) = µ∗(E ∩Bn) + µ∗(E ∩Bc
n)

=
n∑

k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc
n)

≥
n∑

k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

since Bc ⊆ Bc
n, and taking the limit as n→∞, we have

µ∗(E) ≥
∞∑

k=1

µ∗(E ∩Ak) + µ∗(E ∩Bc)

≥ µ∗

( ∞⋃
k=1

(E ∩Ak)

)
+ µ∗(E ∩Bc)

= µ∗(E ∩B) + µ∗(E ∩Bc)

so B is µ∗-measurable.
So M is an algebra where countable unions of disjoint sets in M are in M.

Therefore M is a σ algebra by Lemma 1.2.4.
Note that this last set of inequalities means that in the special case that

E = B,

µ∗(B) ≥
∞∑

k=1

µ∗(Ak) ≥ µ∗(B),

and hence

µ∗

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ∗(Ak).

So µ∗ is in fact a measure when restricted to M.

We are almost done at this point, since we now have a measure. We just
need to check that everything is well-behaved for our original sets E .

Proposition 1.4.4
Every elementary set is m∗-measurable.

Proof:
Let A be any elementary set, and E any set, then for any ε > 0 we can find

a family of sets Bi ∈ E such that E ⊆
⋂∞

i=1Bi and
∑∞

i=1m(Bi) ≤ m∗(E) + ε.
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Hence

m∗(E) + ε ≥
∞∑

i=1

m(Bi)

=
∞∑

i=1

(m(Bi ∩A) +m(Bi ∩Ac))

=
∞∑

i=1

m(Bi ∩A) +
∞∑

i=1

m(Bi ∩Ac)

≥ m∗(E ∩A) +m∗(E ∩Ac)

since E ∩ A =
⋃∞

i=1(Bi ∩ A) and E ∩ Ac =
⋃∞

i=1(Bi ∩ Ac). So A satisfies
Equation 1.2, hence A is m∗-measurable.

The following fact is also noteworthy:

Proposition 1.4.5
If A ⊂ B and B ∈M with µ∗(B) = 0, then A ∈M with µ∗(A) = 0.

Proof:
We first note that if µ∗(B) = 0, then the outer measure of any subset must

be 0 as well, so we need only check that A is µ∗-measurable. For any set E, we
have µ∗(E ∩A) ≤ µ∗(A) = 0, so

µ∗(E ∩A) + µ∗(E ∩Ac) = µ∗(E ∩Ac) ≤ µ∗(E),

and hence A is µ∗-measurable.

Measures with this property are called complete.

Example 1.4.3
Every subset X of the Cantor set C is m∗-measureable and has m∗(X) = 0.

3

Exercises

1.4.1. Show that the Lebesgue outer measure of Q is 0.

1.4.2. (†) Let N be the set described in Example 1.1.2. Show that the Lebesgue
outer measure of N is not 0. Show that the Lebesgue outer measure of
[0, 1) \N is 1. Conclude that N is not m∗-measureable.

1.4.3. (†) Show that any countable set has Lebesgue outer measure 0.

1.4.4. Show that any measure µ on P(R) is also an outer measure.
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1.4.5. (†) Let f be a monotone increasing function on R. If I is an interval with
endpoints a and b, define

mf (I) = f(b)− f(a),

and extend mf to E in the obvious way. Now define

m∗
f (A) = inf

{ ∞∑
k=1

mf (Ak) : Ak ∈ E , A ⊆
∞⋃

k=1

Ak

}
for any A ⊆ R.

Show that m∗
f is an outer measure.

1.4.6. Refer to Exercise 1.2.6. When working with concepts from this section in
Rn, replace references to R by Rn throughout. Define, for any set A ⊆ Rn,

m∗
n(A) = inf

{ ∞∑
k=1

mn(Ak) : Ak ∈ En, A ⊆
∞⋃

k=1

Ak

}
.

Show that m∗
n is an outer measure. Show that every set in En is m∗

n-
measurable. Show that m∗

n is complete.

1.5 Lebesgue Measure

We have found a measure which is defined on a σ-algebra which includes E and,
as we observed in the previous section, is equal to m on E . Since this measure
extends m we will also denote it by m. We call this measure the Lebesgue
measure on R, and the m∗-measurable sets Lebesgue measurable sets.

Proposition 1.5.1
If A is open then A is Lebesgue measurable. If A is closed then A is Lebesgue
measurable.

If A is open and not empty, then m(A) > 0.

Proof:
By Proposition 1.11.2, every open set is a countable disjoint union of open

intervals. All intervals are in E and hence M and since M is a σ-algebra,
A ∈M.

If A is closed then Ac is open and so Ac ∈M. Therefore A ∈M.
Any open set A which is not empty contains a non-trivial open interval (a, b).

Hence 0 < b− a = m((a, b)) ≤ m(A).

As discussed earlier, we really want this measure to be invariant under
length-preserving transformations. Additionally we would like the measure of a
set to scale under compression and expansion. Fortunately, this is the case. For
any set X ⊂ R, and number r ∈ R, define X + r = {x+ r : x ∈ X} (translation
by r units) and rX = {rx : x ∈ X} (expansion or contraction, and reflection by
a factor r centered at the origin).
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Theorem 1.5.2
If A is Lebesgue measurable, so are A+ r and rA for any r ∈ R and, moreover,
m(A+ r) = m(A) and m(rA) = |r|m(A).

Proof:
First note that for any interval m(r + I) = m(I), since the length of an

interval is invariant under translation. We can also easily verify that m(rI) =
|r|m(I). Given A ∈ E we clearly have m(A+ r) = m(A) and m(rA) = |r|m(A)
by applying the result for intervals to the intervals which make up A.

Now for any A ⊆ R, m∗(A + r) = m∗(A), since A ⊆
⋃∞

i=1Bi iff A + r ⊆⋃∞
i=1(Bi + r), and so

m∗(A) = inf{
∞∑

i=1

m(Bi) : A ⊆
∞⋃

i=1

Bi}

= inf{
∞∑

i=1

m(Bi + r) : A+ r ⊆
∞⋃

i=1

(Bi + r)}

= m∗(A+ r).

A similar argument shows that m∗(rA) = |r|m∗(A).
Now for any Lebesgue measurable set A, and any other set E,

m∗(E) = m∗(E − r)
= m∗((E − r) ∩A) +m∗((E − r) ∩Ac)
= m∗(E ∩ (A+ r)) +m∗(E ∩ (A+ r)c).

Hence A + r is Lebesgue measurable. A similar argument shows that rA is
Lebesgue measurable.

Finally we simply need to note that of A is Lebesgue measurable, m(A+r) =
m∗(A+ r) = m∗(A) = m(A) and m(rA) = m∗(rA) = |r|m∗(A) = |r|m(A).

It is not hard to see that any countable set has Lebesgue measure 0, but it
turns out that there are uncountable sets which have Lebesgue measure 0. The
most famous of these is the Cantor set.

Example 1.5.1 (The Cantor Set)
In the previous section we showed from first principles that the Cantor set

has m∗(C) = 0, and hence is m∗-measureable, and has m(C) = 0.
However, using the tools from this section we can show that m(C) = 0

without needing to use outer measures at all. Recall that the sets Bk are
elementary sets with

m(Bk) = (2/3)k.

By Exercise 1.3.3, we have

m(C) = m

( ∞⋂
k=1

Bk

)
= lim

k→∞
m(Bk) = lim

k→∞
(2/3)k = 0.
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26 Lebesgue Measure

So the Cantor set is an uncountable set whose Lebesgue measure is 0. 3

One can modify the construction of the Cantor set in such a way that the
resulting set has any measure in the range [0, 1). See the exercises for this
chapter.

Exercises

Several of the following exercises refer to so-called “thick” Cantor sets, which
are a generalization of Example 1.4.1. When we need to distinguish between a
general Cantor set and the particular set of Example 1.4.1, we will refer to the
latter as the Cantor middle third set.

Example 1.5.2 (“Thick” Cantor Sets)
Let ξn be a sequence of positive number such that ξ0 = 1 and ξn > 2ξn+1

for all n. Remove from the interval [0, 1] the open middle interval of length
ξ0 − 2ξ1 to get the set B1 = [0, ξ1] ∪ [1 − ξ1, 1]. As in the construction of the
Cantor set (Example 1.5.1), remove the open middle interval of length ξ1 − 2ξ2
from each of the subintervals of B1 to get a set B2. Repeat this construction
inductively to get a sequence of sets Bn. Let B =

⋂
nBn.

These sets are compact and have empty interior, just like the usual Cantor
set. 3

1.5.1. (†) Let B be as in Example 1.5.2. Show that m(B) = limn→∞ 2nξn.

Show that for any θ with 0 < θ < 1, the sequence

ξn =
(

1− θ

2

)n

gives m(B) = 0.

Show that the sequence ξn = αn/n+12−n for 0 < α < 1 gives m(B) = α.

1.5.2. (†) Show that there is no nowhere dense set A ⊆ [0, 1] such thatm(A) = 1.Note: This shows that no thick
Cantor set from the previous
example can have measure 1.

(Recall: A is nowhere dense if the closure of A has empty interior, ie.
A

o
= ∅).

Hint: use Proposition 1.5.1.

1.5.3. (†) Let qn be an enumeration of the rational numbers. Consider intervals
An = (qn−2−n, qn +2−n), and let A =

⋃∞
i=1An. Show that A is an open,

dense set with m(A) ≤ 2.

1.5.4. (†) Show that you can construct an open, dense subset A of R whoseHint: refine the previous
example so the sets An are
always disjoint, and so the
lengths sum to the value you
need; or use the fact that the
complements of open, dense sets
are nowhere dense sets, together
with 1.5.1.

measure m(A) is any value greater than 0.

1.5.5. Let N be the set described in Example 1.1.2 and let C be the Cantor set
of Example 1.5.1. Show that m(N ∩ C) = 0.
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1.5.6. Let N be the set described in Example 1.1.2 and let C be the Cantor set
of Example 1.5.1. Let x ∈ N be written as

x =
∞∑

k=1

ak2−k,

where ak ∈ {0, 1}, and ak is not eventually 1 (ie. represent x in base 2),
and let ϕ : N → C be given by

ϕ(x) =
∞∑

k=1

(2ak)3−k.

Show that m(ϕ(N)) = 0.

1.5.7. Let E be any Lebesgue measurable set. Given any α ∈ [0,m(E)] show
that there is a Lebesgue measureable set F with m(F ) = α.

1.5.8. Refer to Exercises 1.2.6 and 1.4.6. Let mn be the restriction of Rn to the
m∗

n-measurable sets, and call this Lebesgure measure on Rn.

Show that all open and closed sets are mn measurable. Show that if A is
m∗

n-measurable, then mn(x + A) = mn(A) for all x ∈ Rn and mn(cA) =
|x|nmn(A) for all c ∈ R.

Let T : Rn → Rn be a linear transformation. Show that for each T there
is some number D(T ) so that mn(T (A)) = D(T )mn(A). In particular,
show that an orthogonal (ie. distance-preserving) transformation leaves
the measure invariant.

Show that in fact the number D(T ) = |detT |, where detT is the determi-
nant of a matrix which represents the linear transformation with respect
to some basis of Rn.

(These last two parts are quite hard.)

1.6 Measurable Functions

Now that we have a notion of the “volume” of a subset of the real numbers
we want to apply this to define an integration theory based on this. One con-
sequence of Example 1.1.2 is that not every function can be integrated. In
particular, the characteristic function χN of the set described in that example
is not a good candidate for being integrated. What we want are a class of
functions that behave nicely on measurable sets.

Definition 1.6.1
Let X be any subset of R. A function f : X → R is (Lebesgue) measurable Note: this definition is very

similar to the definition or
theorem which says that a
continuous function has the
property that the inverse images
of open sets are open.

on X if given any interval I ⊆ R, the set f−1(I) is Lebesgue measurable.
If f is measurable on R, we will simply say that it is measurable.
We will denote the set of all measurable functions on X by L(X).
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28 Lebesgue Measure

Clearly if f is measurable on X, then X must be a measurable set, for
f−1(R) = X. Similarly, it is not hard to see that ifX ⊆ Y withX a measureable
set, and f is measurable on Y , f |X is measurable on X. For this reason, we
will be slightly sloppy and refer to f being measurable on X, even when it is
defined on a larger set.

Example 1.6.1
Let X be any measurable subset of R. A characteristic function χA : X → R

of a set A ∈ R is measurable on X if and only if A∩X is Lebesgue measurable.
Since the range of the characteristic function is 0 and 1, we need only ask

whether or not these two points lie in the interval I to calculate f−1(I). If
neither lie in I, f−1(I) = ∅, which is Lebesgue measurable. If both lie in I,
f−1(I) = X, which is also Lebesgue measurable. If 1 ∈ I, but 0 is not in
I, then f−1(I) = X ∩ A, which is measurable. Finally, if 0 ∈ I, but 0 /∈ I,
then f−1(I) = X ∩ Ac, which is Lebesgue measurable, since X ∩ A and X are
Lebesgue measurable. 3

If f is measurable on X, the product fχX is measurable on any measurable
set Y containing X. In particular this means that if f : X → R, we can extend
it to a measurable function on all of R by simply setting f(x) = 0 for all x /∈ X.

A simple function is a function of the form

ϕ(x) =
n∑

k=1

ckχEk
(x)

for some numbers ck and sets Ek. Simple functions are precisely the functions
whose range is a finite set. It is worthwhile noting that we can always write ϕ
so that the sets Ek are the sets ϕ−1(ck), for ck in the range of ϕ, and we will
say that this way of writing ϕ is the standard representation.

An argument similar to Example 1.6.1 shows that a simple function ϕ is
measurable on X if and only if the sets Ek ∩X of the standard representation
are Lebesgue measurable.

There are a number of equivalent ways of verifying that a more sophisticated
function is measurable. In particular, we need not check the inverse image of
every interval.

Proposition 1.6.1
Let f : X → R. Then the following are equivalent:

(i) f ∈ L(X).

(ii) f−1((a,∞)) is measurable for all a ∈ [−∞,∞)

(iii) f−1([a,∞)) is measurable for all a ∈ (−∞,∞)

(iv) f−1((−∞, b)) is measurable for all b ∈ (−∞,∞]

(v) f−1((−∞, b]) is measurable for all b ∈ (−∞,∞)
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(vi) f−1((a, b)) is measurable for all a, b ∈ [−∞,∞]

(vii) f−1([a, b]) is measurable for all a, b ∈ (−∞,∞).

(viii) f−1(U) is measurable for every open subset U of R.

(ix) f−1(F ) is measurable for every closed subset F of R.

The proof of each of these cases is very similar, and in each case revolves
around the fact that you can construct arbitrary intervals out of unions, inter-
sections and complements of these sets, and the inverse images of these unions,
intersections and complements must therefore be measurable. We will prove
some of these cases and leave the rest as an exercise.
Proof:

Clearly (i) ⇒ (ii), (iii), (iv), (v), (vi) and (vii).
We also have (viii) ⇒ (ii), (iv) and (vi) since the intervals in these cases are

all open sets, while (ix) ⇒ (iii), (v) and (vii) since the intervals in these cases
are closed sets.

(ii) ⇒ (iv): Given any b, we note that

∞⋃
k=1

(b− 1/k,∞)c =
∞⋃

k=1

(−∞, b− 1/k] = (−∞, b),

and so

f−1((−∞, b)) = f−1

( ∞⋃
k=1

(b− 1/k,∞)c

)
=

∞⋃
k=1

f−1((b− 1/k,∞))c,

which is a countable union of Lebesgue measurable sets; and hence is a Lebesgue
measurable set.

(ii) ⇒ (vi): Given any a and b,

(a, b) = (−∞, b) ∩ (a,∞),

so
f−1((a, b)) = f−1((−∞, b)) ∩ f−1((a,∞)),

and we know that the second set is Lebesgue measurable by (ii), and the first
by the fact that (ii) ⇒ (vi). Therefore f−1((a, b)) is Lebesgue measurable by
Exercise 1.2.1.

(vi) ⇒ (i): Given any interval I, with left and right endpoints a and b, we
are done if I is open. If I = [a, b], we have

[a, b] =
∞⋂

k=1

(a− 1/k, b+ 1/k),

and so

f−1([a, b]) =
∞⋂

k=1

f−1((a− 1/k, b+ 1/k))
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which is Lebesgue measurable by Exercise 1.3.3. If I = (a, b], then we can write
I = [a, b]∩ (a, b+1), and similarly if I = [a, b) we can write I = [a, b]∩ (a−1, b),
and taking inverse images, we can easily see that f−1(I) is Lebesgue measurable
in both cases.

(vi) ⇒ (viii): Every open set U in R is a countable union of bounded open
intervals by Corollary 1.11.3. In other words we have ak, bk ∈ R such that

U =
∞⋃

k=1

(ak, bk).

But then

f−1(U) =
∞⋃

k=1

f−1((ak, bk)),

and so it is a countable union of Lebesgue measurable sets, and hence is Lebesgue
measureable.

(viii) ⇒ (ix): If F is closed, then F c is open, and so f−1(F c) is Lebesgue
measurable. But then

f−1(F ) = f−1((F c)c) = f−1(F c)c

is measurable, since complements of measurable sets are measurable.

Using these equivalent ways of describing measurability, we can easily get
important examples of measurable functions.

Example 1.6.2
Recall that a function f : X → R is continuous if given any open interval

U , f−1(U) is relatively open (ie. there is some open set V ⊆ R with f−1(U) =
V ∩X).

Every continuous function is therefore measurable, since by Proposition 1.6.1
we only need check the inverse images of open intervals to determine measur-
ability, and the inverse images of open intervals are relatively open sets, which
are measurable by Proposition 1.5.1 and Exercise 1.2.1, since f−1(U) = V ∩X
where V is open and X is measurable. 3

In fact the set of measurable functions is fairly nice from an algebraic and
analytic point of view:

Theorem 1.6.2
If f and g ∈ L(X), h is a continuous function on f(X), and c is any constant,
then:

(i) cf is measurable;

(ii) f + g is measurable;

(iii) fg is measurable;
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(iv) h ◦ f is measurable.

Proof:
(i) If c = 0, the result is trivial because the zero function is continuous.

If c 6= 0 we have that (cf)−1(I) = c−1(f−1(I)), and a constant multiple of a
measurable set is measurable by Theorem 1.5.2.

(ii) Let Ψ : R2 → R be the function given by addition, Ψ(x, y) = x+ y, and
u : R → R2 be given by u(x) = (f(x), g(x)), so that f + g(x) = Ψ(f(x), g(x)) =
Ψ(u(x)).

Now for any interval of the form I = (a,∞), (f + g)−1(I) = u−1(Ψ−1(I)),
and Ψ−1(I) = {(x, y) : x + y ≥ a}. This region can be written as a countable
union of open rectangles Rk = Ik × Jk, where Ik and Jk are open intervals.
For example, we could take a countable union of all rectangles of the form
(n2−j , (n+1)2−j)×(m2−j , (m+1)2−j) which are contained in Ψ−1(I) for some
n, m ∈ Z and j ∈ N.

We observe that u−1(Rk) = f−1(Ik)∩g−1(Jk), which is Lebesgue measurable
since f and g are Lebesgue measurable, and so

(f + g)−1(I) = u−1(ϕ−1(I)) = u−1

( ∞⋃
k=1

Rk

)
=

∞⋃
k=1

f−1(Ik) ∩ g−1(Jk)

which is Lebesgue measurable.
(iii) The proof of this is essentially the same as (ii), except that we use the

multiplication function Φ(x, y) = xy in place of Ψ.
(iv) For any open interval I, h−1(I) is a relatively open set in X, because h

is continuous on X. So there is some open set U with h−1(I) = U ∩ f(X), and
therefore (h ◦ f)−1(I) = f−1(U ∩ f(X)) = f−1(U) is measurable by Proposi-
tion 1.6.1, part (vii).

This result says that the collection of measurable functions is a vector space.
In fact it is also an algebra. Also note that this means that f − g is measurable
if f and g are measurable.

Unfortunately we cannot guarantee that f ◦ g is measurable if f and g are
measurable.

Example 1.6.3
Let X be the set [0, 1). Let N be the unmeasurable set described Exam-

ple 1.1.2 (with the additional restriction that the one rational number in N is
not a diadic rational number) and let C be the Cantor set of Example 1.5.1. Note: a diadic rational number

is a number of the form k
2n .Let x ∈ [0, 1) be written as

x =
∞∑

k=1

ak2−k,

where ak ∈ {0, 1}, and ak is not eventually 1 (ie. represent x in base 2), and let
ϕ : [0, 1) → C be given by

ϕ(x) =
∞∑

k=1

(2ak)3−k.
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One can show that ϕ is measurable, since it is monotone increasing (see Exer-
cise 1.6.3), and it is one-to-one for points in [0, 1) which are not diadic rationals.

Now ϕ(N) ⊆ C as in Exercise 1.5.6, and since it has the cardinality of the
continuum there is a bijection θ : ϕ(N) → (0,∞), so let

ψ(x) =

{
θ(x) x ∈ ϕ(N),
0 x /∈ ϕ(N).

Again, this function ψ is measurable since ψ−1(I) is either contained in a set of
measure 0, if 0 /∈ I, and so is measurable; or its complement is contained in a
set of measure 0 if 0 ∈ I, and so it is measurable.

However ψ ◦ ϕ is not measurable, since

(ψ ◦ ϕ)−1((0,∞)) = ϕ−1(ψ−1((0,∞))) = ϕ−1(ϕ(N)) = N

is an unmeasurable set. 3

The class of measurable functions behave well under limiting constructs as
well.

Theorem 1.6.3
If fk is a sequence of functions in L(X), then

g(x) = sup
k
fk(x) and h(x) = inf

k
fk(x)

are measurable functions on X.

Proof:
Let I = (a,∞). Then x ∈ g−1(I) iff g(x) > a iff fk(x) > a for some k, and

so

g−1(I) =
∞⋃

k=1

f−1
k (I),

which is measurable. Hence g is measurable.
The same argument works for h with intervals I = (−∞, b).

Corollary 1.6.4
If fk is a sequence in L(X), then

g(x) = lim sup
k

fk(x) and h(x) = lim inf
k

fk(x)

are measurable functions on X.

Proof:
This follows immediately from Theorem 1.6.3 since

lim sup
k

fk(x) = inf
k

sup
n≥k

fn(x)
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and
lim inf

k
fk(x) = sup

k
inf
n≥k

fn(x).

Corollary 1.6.5
If fk is a sequence in L(X) which converge pointwise to a function f , then
f ∈ L(X).

Proof:
If fk → f pointwise, then

f(x) = lim
k
fk(x) = lim sup

k
fk(x).

So f is measurable by Corollary 1.6.4.

Since uniform convergence implies pointwise convergence, the above Corol-
lary also implies that uniform limits of measurable functions are measurable.

Given any function f , we define functions f+ and f− by

f+(x) = max{f(x), 0} f−(x) = max{−f(x), 0}.

From these definitions it is immediate that f = f+ − f−. We also have that
|f | = f+ + f−.

Corollary 1.6.6
Let f : X → R. Then the following are equivalent:

(i) f ∈ L(X).

(ii) f+ and f− are both in L(X).

Proof:
(i) ⇒ (ii): Since the maximum of a finite set is the same as the supremum,

and f and 0 and −f are all measurable, Theorem 1.6.3 gives the result.
(ii) ⇒ (i): If f+ and f− are measurable, then Theorem 1.6.2 tells us that

f = f+ − f− is measurable.

Note that this also tells us that |f | is measurable if f is measurable.

Corollary 1.6.7
Let f : X → R be measurable. Then |f | is measurable.

Proof:
We observe that |f | = f++f−. Therefore it is measurable by Corollary 1.6.6

and Theorem 1.6.2.
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In proofs it is often convenient to work with the positive and negative por-
tions of functions, or with the absolute value, so these corollaries are very im-
portant from a theoretical standpoint. An example of this can be seen in the
proof of the next proposition.

Recall that a measurable set E is a null set if m(E) = 0. We say that two
functions f and g from X to R are equal almost everywhere if the set where
they differ,

{x ∈ X : f(x) 6= g(x)}

is a null set. We often abbreviate “almost everywhere” as “a.e.” and we will
write “f = g almost everywhere” or “f = g a.e.” when this condition holds.

Proposition 1.6.8
If f ∈ L(X), and f = g almost everywhere, then g ∈ L(X).

Proof:
Let E = {x ∈ R : f(x) 6= g(x)} and let h = f − g, so that h = 0 almost

everywhere.
Then h+ is measurable, since (h+)−1((a,∞)) is X if a < 0, or a subset of E

if a ≥ 0. But E is null, so any subset of it is measurable by Proposition 1.4.5.
So h+ is measurable on X. The same argument shows that h− is measurable
in X.

Since h+ and h− are measurable on X, so is h, and g = f +h, and therefore
g is measurable on X.

Finally, and perhaps most importantly, given any non-negative measurable
function f : X → R, we can find a sequence ϕn of measurable simple functions
which increase pointwise to f .

Theorem 1.6.9
Let f ∈ L(X) with f ≥ 0. Then there is a sequence of simple functions ϕn ∈
L(X) with 0 ≤ ϕn ≤ ϕn+1 ≤ f for all n, and ϕn → f pointwise on X.

Proof:
For each n, letStrategy: We are subdividing

the part of the range up into
smaller and smaller subintervals,
while increasing the range that is
covered by these subintervals.

En,k = f−1([(k − 1)2−n, k2−n))

for k = 1, 2, . . . , 22n, and let

ϕn =
2n∑

k=1

(k − 1)χEn,k
.

Clearly the sets En,k are measurable, so each simple function ϕn is measurable.
For a fixed x ∈ X, then, we have that

ϕn(x) = min{pn2−n, 2n}

where pn ∈ N with pn2−n ≤ f(x) < (pn + 1)2−n. Hence ϕn(x) ≤ ϕn+1(x), and
as n→∞, ϕn(x) → f(x).
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This theorem is a key part of many other results since, in conjunction with
the monotone convergence theorem (Theorem 1.8.1) of Section 1.8 it helps us
to extend results from measurable simple functions to measurable functions.

Indeed, positive measurable functions play such an important role in the
theory we define L+(X) to be the set of all non-negative measurable functions
on X.

Exercises

1.6.1. Complete the proof of Proposition 1.6.1.

1.6.2. Show that piecewise continuous functions are measurable.

1.6.3. (†) A function is monotone increasing if f(x) ≥ f(y) whenever x ≥ y
and monotone decreasing if f(x) ≤ f(y) whenever x ≥ y.

Show that monotone increasing and montone decreasing functions are
measurable on any measurable set X.

1.6.4. Carefully verify the claims made in Example 1.6.3.

1.6.5. Show that there are functions f and g which are not measurable, but
f + g is measurable.

1.6.6. Show that if h is continuous on a Lebesgue measureable set X ⊆ R, and
f is measurable on h(X), then f ◦ h is measurable on X.

1.6.7. Give an example of a sequence of measurable simple functions (ϕn)∞n=1

with ϕn ≤ ϕn+1, and ϕn(x) → x2 for all x ∈ R.

1.6.8. (†) Let X be a measurable set. Define a relation on the set of measurable
functions on X by f ∼ g when f = g almost everywhere. Prove that ∼ is
an equivalence relation.

1.6.9. Refer to Exercises 1.2.6, 1.4.6 and 1.5.8. Let X ⊆ Rn. A function f :
X → R is (Lebesgue) measurable if given any interval I ⊆ R, f−1(I) is
Lebesgue measurable in Rn.

Prove versions of all the results of this section in this setting.

1.7 Lebesgue Integration

In developing our integration theory, we want to start with the simplest cases,
and move up to the more general cases. The strategy is to start with non-
negative measurable simple functions, use these to define the integral of general
non-negative measurable functions, and then use these to define the integral
of general measurable functions. Unfortunately, although we can define the
general integral fairly easily, we need some deep results about integration of
non-negative measurable functions before we can prove even something basic
like the additivity of integration.
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As a result, we’ll spend some time looking just at integration of non-negative
functions. We start with the simple functions, as we already have an idea of
how to integrate these.

Definition 1.7.1
If E is any Lebesgue measurable set, and ϕ ∈ L+(E) is a simple function withNote: when working with

integrals of simple functions,
remember that 0 · ∞ = 0 by
definition.

standard representation

ϕ(x) =
n∑

k=1

ckχEk
(x),

we define the Lebesgue integral of ϕ to be∫
E

ϕ dm =
n∑

k=1

ckm(Ek ∩ E).

This is a natural definition, since for each component ckχEk
of the simple

function we are adding the “volume” of Ek in E times the height of the function
above it. Note that if ϕ is a step function and E is the interval [a, b], then the
Lebesgue and Riemann integrals agree.

Example 1.7.1
The characteristic function of the set of rational numbers, χQ is a trivial

example of a simple function.∫
E

χQ dm = m(Q ∩ E) = 0

for any measurable set E. This is what we hoped would be the case from the
discussion in Section 1.1. 3

As a matter of notation, observe that we have dropped the variable from
the integral. This is to emphasise that the integral really operates on functions,
rather than expressions in a variable. If we wish to emphasise the variable we
are integrating over, we use the notation∫

E

ϕ(x) dm(x).

We immediately can observe that, for a non-negative, simple, measurable
function ϕ, ∫

E

ϕ dm ∈ [0,∞].

Also ∫
E

0 dm = 0.

The following facts follow from the definition. The proofs are not particularly
enlightening, so we relegate them to Section 1.11.
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Proposition 1.7.1
If E is any Lebesgue measurable set, ϕ and ψ are simple functions in L+(E),
and c ≥ 0 is any constant, then

(i) if ϕ has a representation ϕ =
l∑

k=1

akχGk
, with ak ≥ 0, then

∫
E

ϕ dm =
l∑

k=1

akm(Gk ∩ E).

(ii)

∫
E

cϕ dm = c

∫
E

ϕ dm.

(iii)

∫
E

ϕ+ ψ dm =
∫

E

ϕ dm+
∫

E

ψ dm.

(iv) if ϕ ≤ ψ, then

∫
E

ϕ dm ≤
∫

E

ϕ dm.

(v) if F ⊆ E is measurable,

∫
E

ϕχF dm =
∫

F

ϕ dm.

(vi) if E is null, then

∫
E

ϕ dm = 0.

This proposition tells us that integration of measurable simple functions
behaves pretty much the way we expect. Part (i) of this last theorem is useful
from the standpoint of calculating integrals, since it means that we don’t need
to be careful about how we represent our simple function.

We can now meaningfully make the following definition:

Definition 1.7.2
If E is any Lebesgue measurable set and f ∈ L+(E), then we define the
Lebesgue integral of f to be∫

E

f dm = sup
{∫

E

ϕ dm : 0 ≤ ϕ ≤ f and ϕ simple, measurable

}
If f = ψ is a simple function, this general definition of the Lebesgue integral

and the previous one agree, since part (iv) of the previous Lemma tells us that
the integral of ψ is an upper bound for the set{∫

E

ϕ dm : 0 ≤ ϕ ≤ ψ and ϕ simple, measurable
}
,

but the integral is also a member of the set, so therefore it is the supremum.
We may as well state the definition of the integral of arbitrary measurable

functions at this point, although we will immediately set it aside and go back to
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considering just non-negative functions. The key to the definition is that we can
write f = f+ − f− and integrate the positive and negative parts, since f+ and
f− are non-negative measurable functions if f is measurable. The only thing
we need to be wary of is situations where we have ∞−∞ for the integral.

Definition 1.7.3
If E is any measurable set, and f ∈ L(E) with one of∫

E

f+ dm <∞ or

∫
E

f− dm <∞,

then we define the Lebesgue integral of f on E to be∫
E

f dm =
∫

E

f+ dm−
∫

E

f− dm.

This agrees with the Lebesgue integral defined for non-negative measurable
simple functions and non-negative measurable functions, since in both those
cases f− = 0.

We turn back to the properties of the integral for non-negative functions.

Proposition 1.7.2
Let E be any measurable set, f and g ∈ L+(E), and c ≥ 0 be any constant.
Then

(i)

∫
E

cf dm = c

∫
E

f dm.

(ii) if f ≤ g, then

∫
E

f dm ≤
∫

E

g dm.

(iii) if F ⊆ E is measurable,

∫
E

fχF dm =
∫

F

f dm.

(iv) if E is null, then

∫
E

f dm = 0.

Proof:
(i) If c = 0 the result is trivial. If c > 0 and ψ is any non-negative, simple,Strategy: We use the facts

about suprema from Section A.4
to extend the results of
Proposition 1.7.1 to more general
functions.

measurable function with ψ ≤ f , then cψ ≤ cf . Therefore,{∫
E

ϕ dm : 0 ≤ ϕ ≤ cf and ϕ simple, measurable
}

⊇
{∫

E

cψ dm : 0 ≤ ψ ≤ f and ψ simple, measurable
}
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Taking suprema of both sides,∫
E

cf dm ≥ sup
{∫

E

cψ dm : 0 ≤ ψ ≤ f and ψ simple, measurable
}

≥ c sup
{∫

E

ψ dm : 0 ≤ ψ ≤ f and ψ simple, measurable
}

≥ c

∫
E

f dm.

But this also means that

c

∫
E

f dm ≥ cc−1

∫
cf dm =

∫
E

cf dm,

so ∫
E

cf dm = c

∫
E

f dm.

(ii) If ϕ is non-negative, simple, and measurable, with ϕ ≤ f , then ϕ ≤ g, so{∫
E

ϕ dm : 0 ≤ ϕ ≤ f and ϕ simple, measurable
}

⊆
{∫

E

ψ dm : 0 ≤ ψ ≤ g and ϕ simple, measurable
}

and simply taking suprema of both sides gives,∫
E

f dm ≤
∫

E

g dm.

(iii) It is trivial that 0 ≤ ϕ ≤ fχF on E if and only if 0 ≤ ϕ(x) ≤ f(x) for
all x ∈ F . Combining this with the fact that ϕ = ϕχF if this is the case and
Proposition 1.7.1, part (iv), we have{∫

E

ϕ dm : 0 ≤ ϕ ≤ fχF and ϕ simple, measurable
}

=
{∫

F

ϕ dm : 0 ≤ ϕ ≤ f and ϕ simple, measurable
}

and so taking suprema we get the result.
(iv) by Proposition 1.7.1,∫

E

f dm = sup
{∫

E

ϕ dm : 0 ≤ ϕ ≤ f and ϕ simple, measurable
}

= sup{0} = 0.
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Note that we haven’t yet shown some key properties that we expect this inte-
gral to have, such as additivity. The proof of additivity requires the convergence
theorem that will be proved in the next section.

We now show how an example of the difficulty of working with this definition
of the integral.

Example 1.7.2
Consider the function f(x) = x on the set [0, 1]. f is measurable, since f isNote: the method of this

example can be generalized to
any monotone increasing
continuous function.

continuous.
We immediately note that f(x) = x is Riemann integrable. Given any

partition P = {0 = a0 < a1 < . . . < an = 1 of [0, 1], let Ik = [ak−1, ak) for
k = 1, 2, . . . n− 1 and In = [an−1, 1]. Let

ψ =
n∑

k=1

ak−1χIk
.

It is straighforward that ψ ≤ f , and that∫
[0,1]

ψ dm =
n∑

k=1

ak−1(ak − ak−1) = L(f,P).

Since these step functions ψ are a special subset of the general simple functions
ϕ with 0 ≤ ϕ ≤ f , we have that∫

[0,1]

f dm ≥ sup

{∫
[0,1]

ψ dm : ψ as above

}
(1.3)

= sup{L(f,P) : P a partition} =
∫ 1

0

x dx = 1/2. (1.4)

If 0 ≤ ϕ ≤ f on [0, 1] with ϕ ∈ L+([0, 1)), then if ϕ =
∑n

k=1 ckχEk
is

the standard representation we immediately have that the sets Ek are pairwise
disjoint. Also

ck ≤ inf Ek

for all k, otherwise we can find x ∈ Ek with ck ≥ x, and then ϕ(x) = ck ≥ x =
f(x), which contradicts our assumption.

Without loss of generality, we can assume that 0 = c1 < c2 < c3 < . . . <
cn < 1. Let Ik = [ck, ck + 1) for 1 ≤ k < n, and In = [cn, 1]. Then let

ψ =
n∑

k=1

ckχIk
.

We have ϕ ≤ ψ, since if ϕ(x) = ck, then x ∈ Ek, which means x ∈ Im for some
m ≥ k, as otherwise x < ck ≤ inf Ek ≤ x, which is a contradiction. Therefore
ψ(x) = cm ≥ ck = ϕ(x). So∫

[0,1]

ϕ dm ≤
∫

[0,1]

ψ dm.
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Also, clearly, 0 ≤ ψ ≤ f , so this means that it is sufficient to take the
suprema of functions like ψ, instead of general simple functions, to find the
integral of f . But ψ is exactly the step function coming from the lower sum of
f with the partition P = {c1, c2, . . . , cn, 1}, ie.

∫
[0,1]

ψ dm = L(f,P) ≤
∫ 1

0

x dx = 1/2,

and so ∫
[0,1]

f dm ≤ 1/2.

Therefore ∫
[0,1]

f dm = 1/2

using Lebesgue integration, which is very good, since it agrees with the Riemann
integral. 3

While this example demonstrates that you can find Lebesgue integrals from
first principles, in practice it is usually much easier to approximate the function
we want by functions which are easy to integrate, and then use the convergence
theorems we will see in the next few sections.

The next result is important both for technical reasons and philosophical
reasons when we come to generalise integration.

Proposition 1.7.3
If f ∈ L+(R), then the set function

µf (A) =
∫

A

f dm

defined for A in the σ-algebra of Lebesgue measurable sets is a measure.

Proof:
First note that

µf (∅) =
∫
∅
f dm = 0

for every function f .
Let A be the disjoint union of a countable family of sets Ak.
Firstly we note that if f = χE for some measurable set E, then σ-additivity
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of µf follows directly from σ-additivity of m, for

µf (A) =
∫

A

χE dm = m(A ∩ E)

= m

( ∞⋃
k=1

Ak ∩ E

)

= m

( ∞⋃
k=1

(Ak ∩ E)

)

=
∞∑

k=1

m(Ak ∩ E) =
∞∑

k=1

µf (Ak).

Immediately from this we can see that if f is a simple function
∑n

k=1 ckχEk
,

then µf is also σ-additive:

µf (A) =
n∑

k=1

ckm(A ∩ Ek) =
n∑

k=1

ck

∞∑
j=1

m(Aj ∩ Ek)

=
∞∑

j=1

n∑
k=1

ckm(Aj ∩ Ek) =
∞∑

k=1

µf (Ak).

Now for any f ∈ L+(R), if we have any simple function ϕ with 0 ≤ ϕ ≤ f ,∫
A

ϕ dm =
∞∑

k=1

∫
Ak

ϕ dm ≤
∞∑

k=1

µf (Ak),

and taking suprema over all such ϕ we then get

µf (A) ≤
∞∑

k=1

µf (Ak).

If any of the Ak have µf (Ak) = ∞, we are done, for then µf (A) ≥ µf (Ak) =
∞. So we now assume that µf (Ak) is finite for all k.

Now, given any two disjoint measurable sets E and F with µf (E) and µf (F )
finite, and any ε > 0, we can find a measurable simple function ϕ such that∫

E

ϕ dm ≥
∫

E

f dm− ε/2 and
∫

F

ϕ dm ≥
∫

F

f dm− ε/2

and so

µf (E ∪ F ) ≥
∫

E∪F

ϕ dm =
∫

E

ϕ dm+
∫

E

ϕ dm ≥ µf (E) + µf (F )− ε.

Since this is true for any ε > 0, we have

µf (E ∪ F ) ≥ µf (E) + µf (F ),
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and by repeated application of this result, we have

µf

(
n⋃

k=1

Ak

)
≥

n∑
k=1

µf (Ak).

Finally, since A ⊇
⋃n

k=1Ak for all n we have

µf (A) ≥
n∑

k=1

µf (Ak)

for all n, and so

µf (A) ≥
∞∑

k=1

µf (Ak).

Therefore µf is σ-additive.

The philosophical importance of this result is that there are lots of measures
on R. It is also extremely useful as it allows us to break integrals up over
measurable sets. Consider the following corollaries:

Corollary 1.7.4
If E and F are disjoint measurable sets and f ∈ L(E ∪ F ), then∫

E∪F

f dm =
∫

E

f dm+
∫

F

f dm.

Proof:
This is just the previous result applied to fχE∪F ∈ L+(R) and written as

integrals.

Corollary 1.7.5
If E and F are measurable sets with F ⊂ E and m(E \ F ) = 0, then∫

E

f dm =
∫

F

f dm.

Proof:∫
E

f dm =
∫

F∪(E\F )

f dm =
∫

F

f dm+
∫

E\F
f dm =

∫
F

f dm+ 0.

Another way of thinking of this result is that if we alter the value of a
function on a set of measure 0, the value of the integral is unaffected.
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Corollary 1.7.6
If f is a measurable function and f = g almost everywhere, and E is a measur-
able set, then ∫

E

f dm =
∫

E

g dm.

Proof:
Let F = {x ∈ R|f(x) = g(x)}, so m(E \ F ) = 0. Then∫

E

f dm =
∫

F

f dm =
∫

F

g dm =
∫

E

g dm

since f = g on F .

This fact means that it is often sufficient to consider the behaviour of func-
tions almost everywhere. For example, in the next section we will

Exercises

1.7.1. Show that
∫
∅ f dm = 0 for every f ∈ L(E).

1.7.2. (†) Let m(E) < ∞. Show that if fn ∈ L+(E) and fn → f uniformly,
then f ∈ L+(E) and ∫

E

f dm = lim
n→∞

∫
E

fn dm.

1.7.3. Let m(E) = ∞. Find fn and f ∈ L+(E) with∫
E

f dm = 0,

and fn → f uniformly, but

lim
n→∞

∫
E

fn dm→∞.

1.7.4. (†) Let f ∈ L+(R) and c ∈ R and constant.

Show that ∫
R
f(x+ c) dm(x) =

∫
R
f(x) dm(x)

and if c 6= 0, then∫
R
f(cx) dm(x) = |c|−1

∫
R
f(x) dm(x).

1.7.5. Using the method of Example 1.7.2, show that if f(x) = x2,∫
[0,1]

f dm =
∫ 1

0

x2 dx = 1/3.
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1.8 Monotone Convergence Theorem

The most powerful results of Lebesgue integration theory come from the fact
that it is comparatively well-behaved under limits. There are two big conver-
gence theorems, the monotone convergence theorem (which we’ll often abbre-
viate as the MCT) and the dominated convergence theorem (or DCT). We are
at a point where we can prove the first of these, which applies only to integrals
non-negative functions. The dominated convergence theorem applies more gen-
erally, and so we’ll present it once we’ve discussed integrals of more general
functions.

Theorem 1.8.1 (Monotone Convergence Theorem)
Let fn be a monotone increasing sequence of functions in L+(E). That is,
0 ≤ fn(x) ≤ fn+1(x) for all x ∈ E and n ∈ N. If f is the pointwise limit of the
fn, then ∫

E

f dm = lim
n→∞

∫
E

fn dm.

Proof:
It is clear that, since fn is increasing, so are the integrals, and so there is

some α ∈ [0,∞] such that

lim
n→∞

∫
E

fn dm = α.

Moreover, since
∫

E
fn dm ≤

∫
E
f dm, for all n,

α ≤
∫

E

f dm.

Choose c with 0 < c < 1. Now let ϕ be a simple function such that 0 ≤ ϕ ≤
f , and let

En = {x : fn(x) ≥ cϕ(x)}

Since the fn(x) are increasing for each x, En ⊆ En+1 for all n, and since
fn(x) → f(x), we have that every x is eventually in some En, so

E =
∞⋃

n=1

En.

Now ∫
E

fn dm ≥
∫

En

fn dm ≥
∫

En

cϕ dm = µcϕ(En),

and since µcϕ is a measure by Proposition 1.7.3, Proposition 1.3.3 tells us that
µcϕ(E) = limn→∞ µcϕ(En), and so

α = lim
n→∞

∫
E

fn dm ≥
∫

E

cϕ dm = c

∫
E

ϕ dm
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and therefore, letting c→ 1,

α ≥
∫

E

ϕ dm.

Then using the definition of the integral to take suprema, we get

α ≥
∫

E

f dm,

and so ∫
E

f dm = lim
n→∞

∫
E

fn dm.

Exercise 1.8.4 and Exercise 1.8.5 shows that is is necessary that the sequence
be monotone increasing.

Part of the utility of this theorem is that it allows us to evaluate Lebesgue
integrals with ease.

Example 1.8.1
Let f(x) = x and consider the interval [0, 1). Let ϕn be the simple function

ϕn =
2n−1∑
k=0

k2−nχ[k2−n,(k+1)2−n).

It is not hard to see that ϕn ≤ ϕn+1, and also that ϕn(x) → x as n→∞.
The monotone convergence theorem then tells us that∫

[0,1)

f dm = lim
n→∞

∫
[0,1)

ϕn dm

= lim
n→∞

2n−1∑
k=0

k2−2n

= lim
n→∞

(2n − 1)2n

2
2−2n

= lim
n→∞

22n − 2n

22n+1

= 1/2.

3

This is clearly superior to the method used in Example 1.7.2.
In fact, it turns out that we don’t need a monotone sequence fn to converge

to f at every point, all we need is convergence at almost every point, giving this
slight refinement of the monotone convergence theorem.
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Corollary 1.8.2
Let fn be a monotone increasing sequence of functions in L+(E), and f a
function. If

f(x) = lim
n→∞

fn(x)

almost everywhere in E, then∫
E

f dm = lim
n→∞

∫
E

fn dm.

Proof:
Let

F = {x ∈ E : f(x) = lim
n→∞

fn(x)}.

Then m(E \ F ) = 0, and using the monotone convergence theorem on F , we
have ∫

E

f dm =
∫

F

f dm = lim
n→∞

∫
F

fn dm = lim
n→∞

∫
E

fn dm.

In such cases as this we will say that the sequence fn converges to f point-
wise almost everywhere or pointwise a.e. Convergence pointwise a.e. is
weaker than pointwise convergence, since if fn → f pointwise, then automati-
cally fn → f pointwise a.e.

This monotone convergence theorem is vital in proving many useful results,
not least of which is that integration is additive.

Theorem 1.8.3
Let fk a (finite or infinite) sequence of functions in L+(E), and let

f =
∑

k

fk.

Then ∫
E

f dm =
∑

k

∫
E

fk dm.

Proof:
Given two functions f1 and f2, we can use find monotone increasing se-

quences of simple functions ϕk and ψj which converge pointwise to f1 and f2
respectively, by Theorem 1.6.9. Then the sequence ϕk +ψk converges pointwise
to f1 + f2, and ϕk + ψk ≤ ϕk+1 ≤ ψk+1. Therefore∫

E

f1 + f2 dm = lim
k→∞

∫
E

ϕk + ψk dm

= lim
k→∞

∫
E

ϕk dm+ lim
k→∞

∫
E

ψk dm =
∫

E

f1 dm+
∫

E

f2 dm,
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using the monotone convergence theorem and additivity for simple functions.
Induction gives the result for finite sums.

For infinite sums, note that since fk ≥ 0, the partial sums

sn =
n∑

k=1

fk

form a monotone increasing sequence which converges pointwise to f so, using
the monotone convergence theorem again, we have∫

E

f dm = lim
n→∞

sn dm = lim
n→∞

n∑
k=1

∫
E

fk dm =
∞∑

k=1

∫
E

fk dm.

In general, sequences of functions are not going to be monotone increasing,
and it turns out that we can say a little bit about intergals of functions in such
sequences, even if they do not converge at all. The relevant result is known as
Fatou’s Lemma, and it tells us that the limit infima behaves fairly nicely when
integrated.

Proposition 1.8.4 (Fatou’s Lemma)
If fn is a sequence of functions in L+(E), then∫

E

lim inf
n→∞

fn dm ≤ lim inf
n→∞

∫
E

fn dm.

Proof:
Recall that

lim inf
n→∞

fn(x) = lim
n→∞

inf{fk(x) : i ≥ n}.

Let gn(x) = inf{fk(x) : i ≥ n}. Then the functions gn are non-negative,
measurable and form a monotone increasing sequence. Hence by the monotone
convergence theorem, ∫

E

lim inf
n→∞

fn dm =
∫

E

lim
n→∞

gn dm

= lim
n→∞

∫
E

gn dm

Moreover, since gn ≤ fk for all i ≥ n, we have∫
E

gn dm ≤
∫

E

fk dm

for all i ≥ n, and taking infima of both sides, we get∫
E

gn dm ≤ inf{
∫

E

fk dm : i ≥ n}.
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Therefore∫
E

lim inf
n→∞

fn dm = lim
n→∞

∫
E

gn dm ≤ lim
n→∞

inf{
∫

E

fk dm : i ≥ n}

as required.

Notice that Fatou’s Lemma makes no assumptions about the convergence
properties of the sequence, and so is very general. The conclusion is correspond-
ingly weak, however. But if fn does converge, we have∫

E

lim
n→∞

fn dm ≤ lim inf
n→∞

∫
E

fn dm, (1.5)

which is often useful to know.

Exercises

1.8.1. (†) Use the Monotone Convergence Theorem, together with an appropri- Hint: the sum of the first n
squares is n(n + 1)(2n− 1)/6.ate sequence of simple functions to show that∫

[0,1]

x2 dm(x) = 1/3.

1.8.2. Let f(x) =
1

x2 + 1
and show that

∫
R
f dm = π.
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1.8.3. (†) Show that the monotone convergence theorem can be proved as aNote: it is possible to prove
Fatou’s lemma without using
MCT, so this exercise can give an
alternative proof of MCT.

corollary of Fatou’s lemma.

1.8.4. (†) Find a sequence of non-negative measurable functions fn with f(x) ≤
1 for all x ∈ R, such that fn → 0 pointwise, but∫

R
fn dm = 1.

1.8.5. (†) Find a sequence of non-negative measurable functions fn, with fn → 0
pointwise on [0, 1] and ∫

[0,1]

fn dm = 1.

1.8.6. (†) Let f(x) = x−1/2 on (0, 1), and f(x) = 0 otherwise. Let qn be anHint: Find
R
(0,1) f dm first.

enumeration of the rational numbers, and let gn = f(x − qn)2−n. Then
let

g =
∞∑

i=0

gn.

Let D be the domain of g.

Show that g ∈ L(D), and moreover that∫
R
g dm = 4.

Show that g is and unbounded on every subinterval and hence g is not
Riemann integrable.

Show that g2 <∞ almost everywhere, but∫
I

g2 dm = ∞

for any interval I ⊆ R.

1.9 The General Lebesgue Integral

Recall that if E is any measurable set, and f is a measurable function with one
of ∫

E

f+ dm <∞ or
∫

E

f− dm <∞,

then we define the Lebesgue integral of f on E to be∫
E

f dm =
∫

E

f+ dm−
∫

E

f− dm.

Note that these integrals may be infinite. We say that f is Lebesgue in-
tegrable on E if the Lebesgue integrals of both f+ and f− are finite. We let
L1(E) be the set of Lebesgue integrable functions on E.
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Lemma 1.9.1
Let E be any measurable set. Then the following are equivalent:

(i) f ∈ L1(E).

(ii)

∫
E

f dm is finite.

(iii)

∫
E

|f | dm <∞.

Proof:
(i) ⇒ (iiI): If f ∈ L1(E), then both∫

E

f+ dm <∞ and
∫

E

f− dm <∞,

so ∫
E

|f | dm =
∫

E

f+ dm+
∫

E

f− dm

must be a finite quantity.
(ii) ⇒ (i): If ∫

E

|f | dm =
∫

E

f+ dm+
∫

E

f− dm

is finite, then both parts of the sum must be finite. Hence f ∈ L1(E).
(i) ⇔ (ii): This is left as an (easy) excercise.

The following are immediate consequences of the definition of the general
integral, and are all reasonable properties that we expect an integral to have.

Proposition 1.9.2
Let E be any measurable set, and f , g ∈ L(E) be functions for which the
Lebesgue integral exists, and let c be any constant. Then

(i)

∫
E

cf dm = c

∫
E

f dm.

(ii) if we do not have∫
E

f dm = +∞ and

∫
E

g dm = −∞

or vice versa, then ∫
E

f + g dm =
∫

E

f dm+
∫

E

g dm

(iii) if f ≤ g, then

∫
E

f dm ≤
∫

E

g dm.
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(iv) if F ⊆ E is measurable,

∫
E

fχF dm =
∫

F

f dm.

(v) if E is null, then

∫
E

f dm = 0.

(vi) if f is bounded on E and m(E) < ∞, then f ∈ L1(E). Moreover, if
α ≤ f(x) ≤ β on E, then

αm(E) ≤
∫

E

f dm ≤ βm(E).

Proof:
Almost all of these follow directly from the corresponding result for non-

negative measurable functions applied to f+ and f−.
(i) The result for c = 0 is trivial. If c > 0, (cf)+ = cf+ and (cf)− = cf−, so∫

E

cf dm =
∫

E

cf+ dm−
∫

E

cf− dm

= c

(∫
E

f+ dm−
∫

E

f− dm

)
= c

∫
E

f dm.

On the other hand, (−f)+ = f− and (−f)− = f+, so∫
E

−f dm =
∫

E

f− dm−
∫

E

f+ dm = −
∫

E

f dm.

Combining this with the c > 0 case, we are done.
(ii) Using the fact that f + g = (f + g)+ − (f + g)− = f+ − f− + g+ − g−,

we have
(f + g)+ + f− + g− = (f + g)− + f+ + g+,

and so by the Theorem 1.8.3,∫
E

(f + g)+ dm+
∫

E

f− dm+
∫

E

g− dm

=
∫

E

(f + g)− dm+
∫

E

f+ dm+
∫

E

g+ dm.

Rearranging the terms gives∫
E

f + g dm =
∫

E

(f + g)+ dm−
∫

E

(f + g)− dm

=
∫

E

f+ dm−
∫

E

f− dm+
∫

E

g+ dm−
∫

E

g− dm

=
∫

E

f dm+
∫

E

g dm.
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(iii) we have 0 ≤ f+ ≤ g+ and 0 ≤ g− ≤ f−, and so

0 ≤
∫

E

f+ dm ≤
∫

E

g+ dm and 0 ≤
∫

E

g− dm ≤
∫

E

f− dm

Hence ∫
E

f+ dm−
∫

E

f− dm ≤
∫

E

g+ dm−
∫

E

g− dm,

as required.
(iv) we have that (fχF )+ = f+χF and (fχF )− = f−χF , so∫

E

fχF =
∫
f+χF dm−

∫
f−χF dm =

∫
F

f+ dm−
∫

F

f− dm =
∫

F

f dm.

(v)
∫

E

f dm =
∫

E

f+ dm−
∫

E

f− dm = 0.

(vi) For a bounded measurable function f , we have numbers α and β such
that α ≤ f(x) ≤ β for all x ∈ E.

If α ≥ 0, then f ∈ L+(E), and since α ≤ f ≤ β on E, we have

αm(E) =
∫

E

α dm ≤
∫

E

f dm ≤
∫

E

β dm = βm(E).

If beta ≤ 0, then −f ∈ L+(E), and −β ≤ −f ≤ −α, so we can apply (i) and
the previous part to get

−βm(E) ≤ −
∫

E

f dm ≤ −αm(E),

and multiplying through by −1 gives the result.
Finally, if α < 0 and β > 0 we have 0 ≤ f+ ≤ β and 0 ≤ f− ≤ −α, and so

0 ≤
∫

E

f+ dm ≤ βm(E) and αm(E) ≤ −
∫

E

f− dm ≤ 0.

Adding these inequalities together gives the result.
In all three cases, the integral of f is finite, and so f ∈ L1(E).

Looking at the proof of these results, you will notice that there is a common
technique which is to: (i) prove the result for measurable simple functions, (ii)
use this result for measurable simple functions to prove the result for measurable
f(x) ≥ 0 (usually by either taking suprema, or using the MCT), and (iii) use
the second result to prove for general measurable f . This is generally a good
approach to proving general facts involving Lebesgue integrals.

The one additional component of our theory is a convergence theorem which
applies in this more general setting. Unfortunately, the Monotone Convergence
Theorem cannot apply for general integrable functions, because of the following
example:
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Example 1.9.1
Let fn(x) = −1/n for all x ∈ R. Then fn(x) is pointwise monotone increas-

ing to f(x) = 0. But∫
R
fn dm = −∞, and

∫
R
f dm = 0,

so ∫
R
f dm 6= lim

n→∞

∫
R
fn dm.

3

Fortunately, the convergence theorem which does hold is more powerful be-
cause it allows any sort of pointwise convergence, as long as we have some upper
bound to the integrals.

Theorem 1.9.3 (Dominated Convergence Theorem)
Let fn ∈ L(E) be a sequence of functions for which the Lebesgue integral exists
on E, and let fn → f pointwise. If there is some function g ∈ L1(E), for which

|fn(x)| ≤ g(x),

for all x ∈ E, then ∫
E

f dm = lim
n→∞

∫
E

fn dm.

Proof:
Note that for each n, the functions g + fn and g − fn are non-negative, so

by Fatou’s Lemma∫
E

g dm+
∫

E

f dm =
∫

E

g + f dm

≤ lim inf
n→∞

∫
E

g + fn dm =
∫

E

g dm+ lim inf
n→∞

∫
E

fn dm,∫
E

g dm−
∫

E

f dm =
∫

E

g − f dm

≤ lim inf
n→∞

∫
E

g − fn dm =
∫

E

g dm+ lim inf
n→∞

−
∫

E

fn dm.

Removing the common terms (which we can do because the integral of g is
finite), and recognising the fact that lim inf −cn = − lim sup cn for any sequence
(cn)∞n=1, we have ∫

E

f dm ≤ lim inf
n→∞

∫
E

fn dm,∫
E

f dm ≥ lim sup
n→∞

∫
E

fn dm.
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Therefore ∫
E

f dm = lim
n→∞

∫
E

fn dm.

As with the monotone convergence theorem, the result remains true if we
replace pointwise convergence by pointwise a.e. convergence:

Corollary 1.9.4
Let fn ∈ L(E) be a sequence of functions for which the Lebesgue integral exists
on E, and let fn → f pointwise almost everywhere. If there is some function
g ∈ L1(E), for which

|fn(x)| ≤ g(x),

for all x ∈ E, then ∫
E

f dm = lim
n→∞

∫
E

fn dm.

The proof of this is similar to the proof for the corresponding version of the
monotone convergence theorem, and so is left as an exercise.

Proposition 1.9.5
If fn ∈ L1(E) and

∞∑
n=1

∫
E

|fn| dm <∞,

then there is an f ∈ L1(E), such that

f =
∞∑

n=1

fn

almost everywhere on E, and∫
E

f dm =
∞∑

n=1

∫
E

fn dm.

Proof:
We know from Theorem 1.8.3 for non-negative measurable functions, that∫

E

∞∑
n=1

|fn| dm =
∞∑

n=1

∫
E

|fn| dm <∞,

and so
∑∞

n=1 |fn| is finite almost everywhere (else it would not have a finite
integral). Hence

∞∑
n=1

fn(x)
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converges absolutely almost everywhere, and we can define a function which
is equal to the sum at the convergent points and 0 at the divergent points.
Furthermore, f ∈ L1(E), since∫

E

|f | dm =
∫

E

∞∑
n=1

|fn| dm <∞.

Looking at the partial sums of the sequence, sn, we see that

|sn| =

∣∣∣∣∣
n∑

k=1

fk

∣∣∣∣∣ ≤
n∑

k=1

|fk| ≤
∞∑

k=1

|fk|

and so, by the dominated convergence theorem,∫
E

f dm =
∫

E

lim
n→∞

sn dm = lim
n→∞

∫
E

n∑
k=1

fk dm

= lim
n→∞

n∑
k=1

∫
E

fk dm =
∞∑

k=1

∫
E

fk dm.

Exercises

1.9.1. (†) Let f : R → C. We define Re f and Im f to be the functions which
give the real and imaginary parts of f(x), so

f = Re f + i Im f,

and Re f and Im f are real-valued functions. If Re f and Im f ∈ L1(E),
we define ∫

E

f dm =
∫

E

Re f dm+ i

∫
E

Im f dm

and say that f is Lebesgue integrable.

Show that f is Lebesgue integrable if and only if∫
E

|f | dm <∞.

1.9.2. (†) Using the definitions of Exercise 1.9.1, show that the dominated con-
vergence theorem holds for complex-valued Lebesgue integrable functions.

Show that if fn are complex-valued and Lebesgue integrable, and

∞∑
n=1

∫
E

|fn| dm <∞,
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then
∞∑

n=1

fn

converges a.e to a complex-valued, Lebesgue integrable function f , and∫
E

f dm =
∞∑

n=1

∫
E

fn dm

1.9.3. Complete the proof of Lemma 1.9.1

1.9.4. Prove Corollary 1.9.4.

1.9.5. Show that ∫
[a,b]

x dm(x) = b2/2− a2/2.

1.10 Comparison With the Riemann Integral

While the Lebesgue integral has very nice properties and can be used on a
wide variety of functions, it can be difficult to calculate the value. While the
convergence theorems allow us to find integrals by approximating by simple
functions, we don’t have an analogue of the fundamental theorem of calculus at
present.

Additionally, we would hope that when a function is Riemann integrable that
the Lebesgue integral and Riemann integrals ought to agree. If this is the case,
it will allow us to use the standard techniques of calculus to calculate integrals,
but we will also have available the powerful convergence theorems which allow
us to evaluate many more integrals than we might otherwise be able to do.

Theorem 1.10.1
Let f be a bounded function on an interval [a, b]. If f is Riemann integrable,
then f is Lebesgue integrable, and∫ b

a

f(x) dx =
∫

[a,b]

f dm.

Proof:
If f is Riemann integrable, then for any n, we can find partitions Pn such

that Pn+1 is a refinement of Pn, that ‖Pn‖ → 0 and L(f,P) and U(f,P)
converge to the Riemann integral of f .

Letting

lPn
=

n∑
k=1

mkχ(xk−1,xk] uPn
=

n∑
k=1

Mkχ(xk−1,xk],
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it is easy to see that∫
[a,b]

lPn dm = L(f,Pn) and
∫

[a,b]

uPn dm = U(f,Pn).

Now because each partition is a refinement of the previous one, lPn is a monotone
increasing sequence and uPn is a monotone decreasing sequence, and they are
bounded above and below by the bounds of f . Hence both sequences converge
pointwise to functions l and u, respectively. By the dominated convergence
theorem, ∫

[a,b]

l dm = lim
n→∞

L(f,Pn) =
∫ b

a

f(x) dx

and ∫
[a,b]

u dm = lim
n→∞

U(f,Pn) =
∫ b

a

f(x) dx.

Hence
∫
[a,b]

u − l dm = 0, so u = l almost everywhere, and since l ≤ f ≤ u,
f = u = l almost everywhere as well. Hence f is Lebesgue integrable with∫

[a,b]

f dm =
∫

[a,b]

l dm =
∫ b

a

f(x) dx.

Indeed, one can show that the Riemann integrable functions are precisely
those which are discontinuous on sets of measure zero.

Note also that these integrals are all proper integrals. We can easily extend
the result to absolutely convergent improper integrals.

Theorem 1.10.2
Let f be an function on [a, b) (where b may be +∞) which has an absolutely
convergent improper Riemann integral. Then f is Lebesgue integrable and∫

[a,b)

f dm =
∫ b

a

f(x) dx.

Proof:
Let tn be any increasing sequence which converges to b. We then define

fn = χ[a,tn]f . Then |fn| is a monotone increasing sequence of functions on
[a, b) which converges pointwise to |f |, and hence by the Monotone Convergence
Theorem,∫

[a,b)

|f | dm = lim
n→∞

∫
[a,b)

|fn| dm = lim
n→∞

∫ tn

a

|f(x)| dx =
∫ b

a

|f(x)| dx <∞.

Hence f ∈ L1([a, b)). But then fn converges pointwise to f on [a, b), and
|fn| ≤ |f |, so the Dominated Convergence Theorem tells us that f is Lebesgue
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integrable, and∫
[a,b)

f dm = lim
n→∞

∫
[a,b)

fn dm = lim
n→∞

∫ tn

a

f(x) dx =
∫ b

a

f(x) dx.

The proof for improper integrals on (a, b] is similar.
Note that there are functions on R for which the improper Riemann integral

is defined, but which are not Lebesgue integrable. This might seem like a flaw
in the Lebesgue theory, except that we need to apply this sort of restriction to
Riemann integrals as soon as we consider improper Riemann integrals in Rn. In
other words, the existence of such functions is more an accident of the topology
of R and pales in significance compared to the power of the Lebesgue integral.

To conclude, the Lebesgue integral is more powerful in almost every way
than the Riemann integral. Compared to the Riemann integral, by using the
Lebesgue integral you gain:

• The ability to integrate a function over any measurable set, not just in-
tervals.

• The ability to integrate a much larger class of functions.

• The Monotone and Dominated Convergence Theorems, which are powerful
tools for calculating integrals.

• Agreement with the Riemann integral (and so the Fundamental Theorem
of Calculus) in almost every case.

• A theory of integration which is based on simple axiomatic constructions
which can easily be generalized to an abstract setting.

We will pursue this last advantage in Chapter 3, but to gain a proper un-
derstanding of this general setting, we need to cover some point-set topology
first.

Exercises

1.10.1. Show that
∫

[0,1]

x dm(x) = 1/2.

1.10.2. (†) Given any interval I = (a−R, a+R), consider the power series

f(x) =
∞∑

n=1

cn(x− a)n.

Show that if
∞∑

n=1

|cn|Rn <∞,

then f(x) is Lebesgue integrable on I.
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1.10.3. Let f be a continuous, differentiable, monotone increasing function on Note: This exercise gives a
fundamental theorem of calculus
of sorts. It also foreshadows the
Radon-Nikodym derivative of
Chapter 3.

R. For any interval I with endpoints a and b, define

mf (I) = f(b)− f(a),

and for E ∈ E , define mf (E) in the obvious way.

Show that

m∗
f (A) = inf

{ ∞∑
k=1

mf (Ak) : Ak ∈ E , A ⊆
∞⋃

k=1

Ak

}

is an outer measure.

Show that every Lebesgue measurable set is m∗
f -measurable, and let mf

be the restriction of mf to the Lebesgue measurable sets.

Show that

mf (A) = µf ′(A) =
∫

A

f ′ dm.

1.10.4. Let

f(x) =
∞∑

n=1

(−1)n

n
χ[n,n+1).

Show that f is Riemann integrable on [0,∞), but is not Lebesgue inte-
grable on the same integral.

1.11 Technical Details

In this section we detail some of the proofs which were glossed over earlier in
the interest of a cleaner exposition.

Example 1.1.2

Recall from Example 1.1.2 of Section 1.1, that we had an equivalence relation
defined by x ∼ y if x− y is a rational number. We let N be a set of equivalence
class representatives for this equivalence relation on [0, 1), and we defined sets

Nq = {x+ q : x ∈ N, 0 ≤ x < 1− q} ∪ {x− (1− q) : x ∈ N, 1− q ≤ x < 1},

for every rational number q ∈ Q = [0, 1) ∩Q.
The following claim was made, and although the proof is easy, it was too

long to include in the eaxample.

Claim 1.11.1
Let q, r ∈ Q with q 6= r. Then Nq and Nr are disjoint.
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Proof:
Assume otherwise, so that q 6= r and there is some y ∈ NqcapNr. Without

loss of generality, we may assume that q > r. There are 3 cases that we need to
consider: y ≥ q, q > y ≥ r and r > y.

In the first case, let x1 = y− q and x2 = y− r. Then we have that 0 ≤ x1 =
y − q < 1 − q and y = x1 + q, from which we conclude that x1 ∈ N . Similarly
we conclude that x2 ∈ N . Also note that x2 − x1 = (y − r)− (y − q) = q − r is
rational, so x1 ∼ x2.

In the second case we let x1 = y + (1− q) and x2 = y − r. Using the same
argument as before, we have x2 ∈ N . We also have x1 ∈ N , since 1−q = x1−y ≤
x1 < 1 and x1 − (1− q) = y. Also note that x2 − x1 = (y− r)− (y+ (1− q)) =
q − r − 1 is rational, so x1 ∼ x2.

In the third case, we let x1 = y+(1−q) and x2 = y+(1−r). Then the same
argument that we used in ther previous case for x1 applies to both x1 and x2, so
both are elements ofN . Also note that x2−x1 = (y+(1−r))−(y+(1−q)) = q−r
is rational, so x1 ∼ x2.

In other words, in each of the 3 cases, x1 and x2 are elements of N with
x1 ∼ x2. But our construction of N assumes that there is precisely one element
from each equivalence class in N , so this is a contradiction.

Hence Nq and Nr are disjoint.

Lemma 1.2.5

Recall from Section 1.2 that the set function m : E → [0,∞] was defined by

m(E) =
n∑

k=1

m(Ik),

for E ∈ E where E = I1 ∪ I2 ∪ . . . ∪ In is a disjoint union of intervals, and

m(Ik) = bk − ak

where the left and right endpoints of Ik are ak and bk (respectively). Note that
the order of the intervals in the union does not affect the value of the sum, so
without loss of generality, one can assume that the endpoints of the interval Ik
satisfy ak and bk with a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn.

Recall also, that E has a disjoint union of intervals which is minimal in the
sense that the union of no pair of intervals is again an interval.
Proof (Lemma 1.2.5):

Let I be any interval with end-points a and b, and Jk, k = 1, . . . , n be
intervals with end points Jk = [ak, bk such that a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤
an ≤ bn. If I = J1 ∪ J2 ∪ . . . ∪ Jn, then it must be the case that ak+1 = bk for
k = 1, . . . , n− 1, and a1 = a, bn = b, so

n∑
k=1

m(Jk) =
n∑

k=1

(bk − ak) = b− a = m(I).

April 26, 2006 Version 0.8



62 Lebesgue Measure

So we have just shown the intuitively obvious fact that if you partition an
interval, the volume of the sub-intervals sums to the volume of the interval.
Hence m is well-defined for intervals.

Letting E = I1 ∪ I2 ∪ . . . ∪ In be the minimal disjoint union with Ik having
end points ak and bk with a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn, and E =
J1 ∪ J2 ∪ . . . ∪ Jp an arbitrary disjoint union, where each Jl has endpoints cl
and dl and c1 ≤ d1 ≤ c2 ≤ d2 ≤ . . . ≤ cp ≤ dp. Then there are numbers
0 = l0 < l1 < l2 < . . . < ln = p, so that Ik = Jlk−1+1 ∪ Jlk−1+2 ∪ . . . ∪ Jlk .
Therefore

p∑
l=1

m(Jl) =
n∑

k=1

lk∑
l=lk−1+1

m(Jl) =
n∑

k=1

m(Ik) = m(E).

Hence m is well-defined on E .

Lemma 1.4.2

Proof (Lemma 1.4.2):
We know that for any n,

m(A) ≥ m

(
n⋃

k=1

Ak

)
=

∞∑
k=1

m(Ak),

and taking limits we then have

m(A) ≥
∞∑

k=1

m(Ak).

Now assume that A is a bounded interval, and let the endpoints of A be
a and b and the endpoints of Ak be ak and bk. Then given any ε > 0 the
open intervals, let εk = 2−i−1ε Bk = (ak − εk, bk + εk) cover the compact set
[a + ε/2, b − ε/2]. Hence we can find a finite subcover by open intervals Bkj ,
j = 1, . . . , n, and for which there is some N such that ij ≤ N for all j. Moreover,
we can choose the Bkj

is such a way that ak1 < ak2 < ak3 < . . . < akn
and
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bkj + εkj ∈ (akj+1 − εkj+1 , bkj + εkj ). Now

m(A) ≤ m([a+ ε/2, b− ε/2]) + ε

≤ m((ak1 − εk1 , bkn
+ εkn

)) + ε

= bkn
+ εkn

− (ak1 − εk1) + ε

= bkn + εkn − (akn − εkn) +
n−1∑
j=1

(akj+1 − εkj+1)− (akj − εkj )) + ε

≤ bkn
− (akn

− εkn
) +

n−1∑
j=1

(bkj
+ εkj

)− (akj
− εkj

)) + ε

≤
n∑

j=1

(bkj − akj ) + 2
n∑

j=1

εkj + ε

≤
n∑

j=1

m(Akj ) + 2ε

≤
∞∑

j=1

m(Akj ) + 2ε.

Since ε can be any number, we are done in the case of a bounded interval. By
restricting to an unbounded interval to [−M,M ] for some M , and using the
above result, we get that

m(A ∩ [−M,M ]) ≤
∞∑

j=1

m(Akj
)

for all M , and so letting M →∞, we get

m(A) ≤
∞∑

j=1

m(Akj ).

Proposition 1.11.2

Proposition 1.11.2
If U ⊂ R is an open set, then U is a countable union of disjoint open intervals.

Proof:
Any open set in R is a union of open intervals, say A =

⋃
α∈J Iα. More

concretely, bu the definition of an open set, for every xinU , we have some
εx > 0 such that Nεx

(x) = (x− εx, x+ εx) ⊆ U , so that

U =
⋃

x∈U

(x− εx, x+ εx).
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However, without loss of generality, we can assume that they are disjoint,
for if two open intervals are not disjoint then their union is an open interval.
Now for each interval Iα we can find a rational number q ∈ Iα, and since the
intervals are disjoint, this number is only in the one interval. So we have an
injective function J → Q defined by this association. Hence J is countable and
so A is a countable union of disjoint open intervals.

Related to this is the following fact:

Corollary 1.11.3
If U ⊂ R is an open set, then U is a countable union of bounded open intervals.

Proof:
If the union from the previous proposition does not contain an interval of

the form (a,∞) or (−infty, b), then we are done. If not, we simlpy replace the
interval (a,∞) by the countable set of bounded intervals

(a, 2n+ 1), (2n, 2n+ 2), (2n+ 1, 2n+ 3), . . . , (2n+ k, 2n+ k + 2), . . .

where n ∈ Z such that 2n > a. While these intervals are no longer disjoint,
they are bounded. We adapt (−∞, b) in a similar manner.

Proposition 1.7.1

Proof:
Let ϕ and ψ have standard representations

ϕ =
n∑

k=1

ckχEk
and ψ =

m∑
k=1

bkχFk

respectively.
(i, part 1) We deal with the case where the sets Gk are pairwise disjoint

first. In this case, each ak = cj for some j, and we have a disjoint unions
Ej = Gk1 ∪Gk2 ∪ . . . ∪Gklj

, and each Gk is in exactly one Ej . Therefore

l∑
k=1

akm(Gk ∩ E) =
n∑

j=1

lj∑
p=1

cjm(Gkp ∩ E)

=
n∑

j=1

cjm(Ej ∩ E) =
∫

E

ϕ dm.

We prove the general case after we have completed (iii).
(ii) If c = 0 the result is trivial. If c 6= 0 it is easy to see that, the standard

representation of cϕ is cϕ =
∑n

k=1 cckχEk
, and so∫

E

cϕ dm =
n∑

k=1

cckm(Ek ∩ E) = c
n∑

k=1

ckm(Ek ∩ E) = c

∫
E

ϕ dm.
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(iii) We can represent ϕ+ ψ by

ϕ+ ψ =
n∑

j=1

m∑
k=1

(cj + bk)χEj∩Fk
.

Since Ej ∩ Fk are pairwise disjoint, (i) tells us that∫
E

ϕ+ ψ dm =
n∑

j=1

m∑
k=1

(cj + bk)m(Ej ∩ Fk ∩ E)

=
n∑

j=1

cj

m∑
k=1

m(Ej ∩ Fk ∩ E) +
m∑

k=1

bk

n∑
j=1

m(Ej ∩ Fk ∩ E)

=
n∑

j=1

cjm(Ej ∩ E) +
m∑

k=1

bkm(Fk ∩ E)

=
∫

E

ϕ dm+
∫

E

ψ dm.

(i, part 2) If Gk are not disjoint, by (ii) and (iii) used repeatedly,∫
E

ϕ dm =
l∑

k=1

ak

∫
E

χGk
dm =

l∑
k=1

akm(Gk ∩ E).

(iv) We have that cj ≤ bk on Ej ∩ Fk, so

n∑
j=1

cjm(Ej ∩ E) =
n∑

j=1

m∑
k=1

cjm(Ej ∩ Fk ∩ E)

≤
n∑

j=1

m∑
k=1

bkm(Ej ∩ Fk ∩ E) =
m∑

k=1

bkm(Fk ∩ E),

and hence ∫
E

ϕ dm ≤
∫

E

ϕ dm.

(v) we note that any subset of a null set is null, and so∫
E

ϕ dm =
n∑

k=1

ckm(Ek ∩ E) = 0.
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Sample Exam Questions

These sample questions are designed to give you an idea of what questions may
be asked on the midterm.

1. State the Monotone Convergence Theorem.

2. State the definition of a Lebesgue measurable function.

3. State the definition of a σ-algebra.

4. If A is a σ-algebra, show that given any countable collection of sets An ∈
A, n = 1, 2, . . ., then

∞⋂
n=1

An ∈ A.

5. Consider the set function c : P(R) → [0,∞] defined by

c(X) =

{
|X| if X is finite
∞ if X is infinite.

Show that c is a measure.

6. Show that if f ∈ L(E), then cf ∈ L(E).

7. Give an example of a Lebsgue measurable set X which contains no inter-
vals, but for which m(X) = 1/3.

8. Find ∫
[−1,2]

x dm(x),

carefully stating the results you use.

9. Let f be a Riemann integrable function on [a, b]. Prove that∫ b

a

f(x) dx ≤
∫

[a,b]

f dm.

10. Give an example of a sequence of functions fn in L+([0, 1]) which converge
pointwise to 0, but for which

lim
n→∞

∫
[0,1]

fn dm 6= 0.

Verify that your example is valid.

11. Let E be a measurable set with m(E) <∞. Show that if fn is a sequence
in L(E), and fn converges to some f ∈ L1(E) uniformly, then∫

E

f dm = lim
n→∞

∫
E

fn dm.
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Chapter 2

General Topology

2.1 Topological Spaces

Topology generalises the notions of convergence and continuity which you have
seen in the context of Rn and (hopefully) more general metric spaces. In these
settings convergence is defined in terms of the distance between points, and
continuity of functions by the preservation of limiting behaviour.

In general topology, we simply start with the notion of an open set.

Definition 2.1.1
A topological space is a pair (X, τ) where X is any set and τ is a family of
subsets of X which satisfy:

1. X and ∅ are in τ .

2. If Aα is a family of sets in τ indexed by α ∈ I, then⋃
α∈I

Aα ∈ τ.

3. If A1, A2, . . . , An is a finite family of sets in τ , then

n⋂
k=1

Ak ∈ τ.

The family of sets τ is called a topology on X. The sets in τ are called
open sets. Sets whose complements are in τ are called closed sets

A concise way of describing the axioms of a topology is that a topology
contains ∅ and X, and is closed under arbitrary unions and finite intersections.
These definitions are reminsicent of the definitions of a σ-algebra from Chapter
1, but the details are distinctly different.

From the definition of topology and DeMorgan’s laws, it is easy to see that
closed sets have the following properties:

67



68 General Topology

1. X and ∅ are closed.

2. If Aα is a family of closed sets indexed by α ∈ I, then⋂
α∈I

Aα

is open.

3. If A1, A2, . . . , An is a finite family of closed sets, then

n⋃
k=1

Ak

is open.

Indeed, it is possible to define topological theory starting from closed sets and
these three facts as axioms, but it is customary to use open sets as the principal
objects.

Example 2.1.1 (Metric Space Topology)
Let X be any set. A metric on X is a function d : X ×X → [0,∞) suchNote: A metric is axiomatizes

the intuitive notion of “distance”
between 2 points in a set.

that d(x, y) = 0 if and only if x = y; and d(x, z) ≤ d(x, y) + d(y, z) for all x,
y, z ∈ X (this property is called the triangle inequality). We call the pair
(X, d) a metric space.

Let (X, d) be a metric space. An open ball in (X, d) is a set of the form

B(x, r) = {y ∈ X : d(x, y) < r}.

We say a set U ⊆ X is open if for every x ∈ U , there is some ε > 0 so that
B(x, ε) ⊆ U .

It is straightforward to see that this is a toplogy. The empty set and the
whole metric space trivially satisfy the condition. If we have an arbitrary col-
lection of such sets Uα for α ∈ I, then for any x ∈

⋃
α∈I Uα, x ∈ Uα′ for some

particular α′ ∈ I, and so there is some ε > 0 with B(x, ε) ⊆ Uα′ , and so

B(x, ε) ⊆
⋃
α∈I

Uα.

Finally, given open sets U1, U2, . . . Un, for every x in the intersection of these
sets we can find ε1, . . . , εn so that B(x, εk) ⊆ Uk for k = 1, . . . , n. But letting
ε = mink εk > 0, we have B(x, ε) ⊆ B(x, εk) ⊆ Uk for k = 1, . . . , n. Hence

B(x, ε) ⊆
n⋂

k=1

Uk.

Equivalently, a set U is open if and only if it is a union of open balls. To
see this, we first note that because of the triangle inequality, open balls are in
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fact open sets. For any x ∈ X and r > 0, given any y ∈ B(x, r) we can let
0 < ε < r − d(x, y), and then given any z ∈ B(y, ε) we have

d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + r − d(x, y) = r,

so B(y, ε) ⊆ B(x, r) and so B(x, r) is open. Therefore any union of open balls
is an open set.

On the other hand, given any open set U . By definition, for every x ∈ U ,
there is a εx > 0 with B(x, εx) ⊆ U . But then

U =
⋃

x∈U

B(x, εx),

so every open set is a union of open balls.
We will denote the collection of all these open sets τd, and we call this

topology the metric space topology.
The standard topology on Rn is the metric topology where d(x, y) is the

standard Euclidean distance between the two points.
If V is a vector space with a norm ‖ · ‖ then d(u, v) = ‖u− v‖ is a metric. 3

Example 2.1.2
The power set of a set X trivially satisfies the axioms of a topology. In

particular, every set of the form {x} for some x ∈ X is open, so this topology
is called the discrete topology on X. It is also the metric topology given by
the discrete metric

d(x, y) =

{
0 x = y,

1 x 6= y.

3

Not all topologies come from metrics.

Example 2.1.3
The family of subsets τ = {∅, X} of X also satisfies the axioms of a topology,

and is called the trivial topology on X. 3

Example 2.1.4
Consider sets in Rn of the form Note: The Zariski topology

plays an important role in
algebraic geometry.

⋃
α∈I

p−1
α (R \ {0})

where pα for α in an index set I are all real polynomials in n variables. It can be
shown that sets of this form are a topology on Rn and that this topology is not
the collection of open sets for any metric. This topology is called the Zariski
topology. 3
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Example 2.1.5
Let X be any set, let (Y, τ) be a topological space, and let F (X,Y ) be the

set of all functions from X to Y . A set of functions is open if it is of the form⋃
α∈I

{f ∈ F (X,Y ) : f(xα) ∈ Uα}

where xα ∈ X and Uα ∈ τ . 3

Example 2.1.6
If (X, τ) is a topological space and Y ⊆ X, then

τY = {A ∩ Y : A ∈ τ}

is a topology on Y called the relative topology. 3

Clearly there may be more than one topology on a set. If τ1 and τ2 are two
topologies on a set X with τ1 ⊂ τ2, then we say τ1 is weaker or coarser than
τ2, and τ2 is stronger or finer than τ1. If τ1 and τ2 are both topologies on X,
then so is τ1 ∩ τ2. Indeed, if T is any collection of topologies on a set X, then
the intersection of all these topologies,⋂

τ∈T
τ,

is also a topology.
If A is any subset of X, the interior of A, denoted A◦ is the union of all

open sets contained in A; while the closure of A, denoted A, is the intersection
of all closed sets containing A. These are, respectively, the largest open set
contained in A and the smallest closed set containing A. Clearly, if A is open,
A◦ = A, and if A is closed A = A.

If x ∈ X, then a neighbourhood of x is any set N which contains some
open set U containing x, or equivalently x ∈ N◦. If N is open, then we say that
it is an open neighbourhood of x.

Open neighbourhoods give a useful way of determining whether a set is open
or not.

Lemma 2.1.1
Let (X, τ) be a topological space. Then a set A ⊆ X is open if and only if for
every x ∈ A we can find an open neighbourhood U of x so that U ⊆ A.

Proof:
If A is open, then it is an open neighbourhood of any of its elements, so that

direction is trivial.
On the other hand, given every x ∈ A, we can find an open neighbourhood

of x, Ux ⊆ A. But then
A =

⋃
x∈A

Ux,
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which is open.

If A = X we say A is dense. A topological space (X, d) which has a
countable dense set Q is said to be separable.

A set A for which the interior of the closure is empty is said to be nowhere
dense.

If one can find two disjoint, closed sets E and F , with X = E ∪ F , then
(X, τ) is said to be disconnected. If a set Y ⊆ X is disconnected in the relative
topology, then Y is said to be a disconnected set in X. A space or set which
is not disconnected is connected.

If given any distinct pair of points x and y ∈ X, there are disjoint closed
sets E and F with x ∈ E and y ∈ F and X = E ∪ F , then (X, τ) is said to be
totally disconnected.

Example 2.1.7
If C is the Cantor middle third set with the relative topology in R, then C

is totally disconnected. 3

Exercises

2.1.1. Let τ = {(a,∞) : a ∈ [−∞,∞)}. Show that this is a topology on R which
is different from the usual topology.

2.1.2. Show that (A◦)c = Ac and that (A)c = (Ac)◦.

2.1.3. Let A be a closed, nowhere dense set. Show that Ac is an open, dense
set.

2.1.4. Show that a set with the discrete topology is totally disconnected.

2.2 Continuous Functions

Recall from undergraduate real analysis that one way to tell if a function was
continuous was that the inverse image of open sets were open. In topology,
since open sets play a fundamental role, it is this that we base the definition on,
rather than one of the other equivalent versions of continuity.

Definition 2.2.1
If (X, τ) and (Y, σ) are topological spaces then a function f : X → Y is contin-
uous if given any open set U ∈ Y , the set f−1(U) is open inX. f is continuous
on a subset A of X if its restriction to A is continuous, where A is given the
relative topology.

f is continuous at a point x ∈ X if given any neighbourhood U of f(x),
f−1(U) is a neighbourhood of x.
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It may seem counterintuitive that we want to look at inverse images of open
sets, rather than the images of open sets. Functions which have the property
that f(U) is open in Y whenever U is open in X are called open functions,
and they may or not be continuous. Open functions have some importance in
functional analysis.

The following facts about continuity are not difficult to verify:

Proposition 2.2.1
If (X, τ) and (Y, σ) are topological spaces and f : X → Y , then:

(i) f is continuous on a subset A of X if and only if it is continuous at
every point in A.

(ii) f is continuous if and only if it is continuous at every point in X.

Part (iii) of this proposition tells us that you only need to check the inverse
images of sets in a base or sub-base to confirm continuity.

Example 2.2.1
If (X, τ) is a topological space, and (Y, d) is a metric space, then you only

need to verify that the inverse images of open balls are open.
In this setting, (v) is the familiar ε-δ definition of continuity at a point when

combined with the neighbourhood bases of open balls {B(f(x), ε) : ε > 0} and
{B(x, δ) : δ > 0}.

We have d(f(x), f(y)) < ε for all y with d(x, y) < δ, if and only f(y) ∈
B(f(x), ε) for all y ∈ B(x, δ), if and only if B(x, δ) ⊆ f−1(B(f(x), ε)). So if for
every set B(f(x), ε) in the first nieghbourhood base, we have a set B(x, δ) ⊆
f−1(B(f(x), ε)) in the second neighbourhood base, then for every ε > 0, there
is a δ > 0 such that d(f(x), f(y)) < ε for all y with d(x, y) < δ, and vice-versa.
3

If we have three topological spaces (X, τ), (Y, σ) and (Z, ω), and f : X → Y
is continuous and g : Y → Z is continuous, then g ◦ f : X → Z is continuous.

If f : X → Y is bijective and both it and its inverse are continuous, then
we say that f is a homeomorphism, and that the two topological spaces are
homeomorphic. Two topological spaces which are homeomorphic are equiva-
lent from the point of view of topology.

Example 2.2.2
Any open interval is homeomorphic with any other open interval. If I = (a, b)

and J = (c, d), are two bounded intervals, then

f(x) =
d− c

b− a
(x− a) + c

is a homeomorphism which demonstrates this. One can find ecplicit examples
for unbounded intervals with similar ease. 3
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Example 2.2.3
A sphere, torus and coffee mug are given the a relative topology in R3. The

torus and the coffe mug are homeomorphic, but the sphere is not homeomorphic
to either one. Showing this requires a bit of work. 3

Continuous functions from a topological space (X, τ) to R or C with their
usual topologies play an important role in analysis. We let C(X,Y ) be the set
of all continuous functions from X to Y . We define Cb(X,R) and Cb(X,C) to
be the set of all continuous, bounded functions from X to R and C respectively,
and we will often simply write C(X) and Cb(X) when the codomain is implict,
or where either can be used (usually we want the codomain to be C for full
generality).

Exercises

2.2.1. Show that if (X, τ) is a topological space and Y ⊆ X, then the inclusion
map ι : Y ↪→ X is continuous when Y is given the relative topology.

2.2.2. Let τ be the usual topology on R and σ be the topology of Exercise 2.1.1.
Show that a function f : R → R is continuous from (R, τ) to (R, σ) if and
only if it is lower semicontinuous.

Which topology should you use to get upper semicontinuous functions?

2.2.3. Show that the functions + : R2 → R and · : R2 → R are both continuous
in the usual topology on R2 and R.

Show that the function x 7→ x−1 is a homeomorphism on R \ {0} with the
relative topology.

2.2.4. Using the previous exercise, show that if (X, τ) is any topological space, Hint: show u(x) = (f(x), g(x))
is continuous from X to R2.and f , g ∈ C(X,R), then f + g and fg are in C(X,R).

2.2.5. If (X, τ) is a connected topological space, (Y, σ) is any topological space,
and f ∈ C(X,Y ), show that f(X) is connected.

2.2.6. An arc, or curve, γ in a topological space (X, τ) is a continuous function
γ : [0, 1] → X (where [0, 1] has the usual topology). We say that a subset A
of a topological space (X, τ) is path connected or arcwise connected if
given any x and y in A, there is an arc γ such that γ(0) = x and γ(1) = y,
and γ([0, 1]) ⊆ A (ie. there is a continuous curve inside A connecting the
two points). If the space as a whole is path connected, then we say it is a
path connected topological space.

Show that Rn is path connected in the usual topology.

Show that if A is path connected, then it is connected.

Show that the set A = {(x, y) : x > 0, y = sinx−1} ∪ {(0, 0)} is connected
as a subset of R2 with the usual topology, but is not path connected.
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2.2.7. A loop γ in a topological space (X, τ) is an arc such that γ(0) = γ(1), Note: this example is the
starting point of algebraic
topology.

and we call this starting and finishing point the base point of the loop.
Fix a point x0 ∈ X, and assume that X is path connected. Two loops γ0

and γ1 with base point x0 are homotopy equivalent, written γ0 ∼ γ1 if
there are loops γt with base point x0, for 0 < t < 1, such that t 7→ γt(a)
is continuous from [0, 1] to X for all a ∈ [0, 1] (in other words, we can
continuously deform γ0 to γ1.

Show that if (X, τ) and (Y, σ) are homeomorphic topological spaces, with
homeomorphism φ : X → Y , then loops γ0 and γ1 in X are homotopy
equivalent if and only if loops Φ ◦ γ0 and Φ ◦ γ1 are homotopy equivalent.

Show that every loop on a sphere is homotopy equivalent to a constant
loop γ(s) = x0. Show that the outer circumference of a torus is not
homotopy equivalent to a constant loop. Conclude that a sphere and a
torus are not homeomorphic.

2.2.8. A topological group G is a group together with a topology τ for which the
binary operation is continuous from G2 → G, where G2 has the product
topology, and the inverse map is continuous from G→ G.

Show that G is a topological group if and only if the map

(x, y) 7→ xy−1

is continuous from G2 → G.

Show that T = {z ∈ C : |z| = 1} is a topolgical group under multiplication
with the relative topology.

Show that any group is a topological group when given the discrete topol-
ogy.

Show that if U ⊆ G is an open set, then g ·U is an open set for any g ∈ G.

2.3 Nets

Topology can also be used to define convergence properties for sequences. We
say that a sequence (xn)∞n=1 eventually satisfies a property P if there is some
n0 such that P is true for all xn with n > n0.

Definition 2.3.1
Let (xn)∞n=1 be a sequence in X and τ a topology on X. (xn)∞n=1 converges to
x in (X, τ) if and only if given any neighbourhood U of x, (xn)∞n=1 is eventually
in U .

In some sense it is convergence which we really care about in analysis, but
sometimes (generally in spaces which are “big”) we need a more general notion
of convergence than sequences give us.

Recall from the appendix that a directed set is a set together with a partial
order (ie. a reflexive, transitive relation) for which every pair of elements has
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an upper bound. The natural numbers with the usual order ≤ is a directed set,
and we can regard a sequence in X as a function from N to X.

Definition 2.3.2
A net in a set X is a function λ 7→ xλ from a directed set Λ to X. We will
usually denote such a net by (xλ)λ∈Λ, and say (xλ) is indexed by Λ.

N with the relation ≤ is a directed set, so all sequences are nets. However
there are other notions of convergence and limits that you have encountered,
even as far back as your calculus courses.

Example 2.3.1
The set of all partitions P of an interval [a, b] with the relation P � Q iff

‖P‖ ≤ ‖Q‖, where
‖P‖ = max

k=1,...,n
(pk − pk−1)

is the mesh of P, is a directed set.
If f : [a, b] → R is a function, then

`P =
n∑

k=1

(inf{f(x) : x ∈ [pk−1, pk]}) (pk − pk−1)

is a net of lower Riemann sums which should be familiar from Riemann inte-
gration. 3

Example 2.3.2
If x is any point in a topological space (X, τ), then the set N of all open

neighbourhoods of x, with the relation by U � V iff U ⊇ V (ie. reverse inclu-
sion) is a directed set. 3

Example 2.3.3
If Λ and Γ are two directed sets, then the set Λ×Γ is directed by the relation

(λ, γ) � (λ′, γ′) iff λ � λ′ and γ � γ′. 3

We say that a net (xλ)λ∈Λ satisfies a property P eventually if there is some
λ0 ∈ Λ such that xλ satisfies P for all λ � λ0; and we say that it satisfies P
frequently if for every λ ∈ Λ there is a µ � λ with xµ satisfying P .

A subnet of a net (xλ)λ∈Λ is a net (yγ)γ∈Γ along with a map γ 7→ λγ from
Γ → Λ such that for every λ ∈ Λ, eventually λγ � λ, and yγ = xλγ for all γ ∈ Γ.
Subsequences of sequences are subnets.

We can define convergence for nets in exactly the same way we do for se-
quences.

Definition 2.3.3
Let (xλ)λ∈Λ be a net in X and τ a topology on X. (xλ)λ∈Λ converges to x in
X if and only if given any open neighbourhood U of x, xλ is eventually in U .
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Figure 2.1: A Sequence with Two Limits

In this case we say that x is a limit of (xλ)λ∈Λ, and we write xλ → x for
λ ∈ Λ, or more commonly

lim
λ∈Λ

xλ = λ.

For example, it is this sort of convergence that we are talking about when
we consider a limit like

lim
‖P‖→0

n∑
k=1

f(x∗k)(xk − xk−1)

Indeed, you are really dealing with nets when considering limits of the form

lim
x→a

f(x)

as well:

Example 2.3.4
Let a ∈ R. Then R is directed by the relation x ≤ y if |x− a| ≥ |y− a|. Any

function f : R → R is a net.
We have that fx(= f(x)) converges to L if and only if

lim
x→a

f(x) = L

in the usual sense of this limit. 3

Note that a net may converge to multiple points if the topology is unusual
enough.

Example 2.3.5
Give (0, 1] the usual topology τ(0,1] considering it as a subset of R with its

usual topology τR, and let X = {0+, 0−} ∪ (0, 1], where 0+ and 0− are abstract
points. Give X the topology

τ = τ(0,1] ∪ {{0+, 0−} ∪ (U ∩ (0, 1]) : 0 ∈ U ∈ τR}.

You can think of this as splitting 0 into two points 0+ and 0− (as illustrated in
Figure 2.1). τ is a topology, but every open set which contains 0± must contain
the other point 0∓.

Consider the sequence xn = 2−n. Then xn → 0+ and xn → 0−. 3
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This sort of “bad” behaviour can be avoided if it is known that the space
satisfies the separation axiom T2 (see below).

Knowing which nets converge is very closely related to the topology of a
topological space. To explore this connection, we introduce two new definitions.
Let (X, τ) be a topological space. If A is any subset of X, we say that x ∈ X
is a limit point of A if there is a net (xλ)λ∈Λ with xλ ∈ A which converges to
x. It is an accumulation point if there is a net (xλ)λ∈Λ with xλ1 6= x which
converges to x. We immediately notice that all accumulation points are limit
points.

Example 2.3.6
The set of limit points of (0, 1] in (R, d) is [0, 1]. This is also the set of

accumulation points. 3

Example 2.3.7
The set of limit points of {1/n : n ∈ N} in (R, d) is {0} ∪ {1/n : n ∈ N}.

However the only accumulation point is 0, since any sequence xk from the set
which converges to 1/n must eventually have xk = 1/n. 3

These concepts are closely related to closed sets. We start with the following
concrete way of thinking of the closure:

Proposition 2.3.1
Let A be any subset of a topological space (X, τ), and let A′ be the set of all

limit points of A. Then A = A′.

Proof:
Assume that there is some limit point x of A which is not in A ie. there is

a net with xλ ∈ A which converges to x, but x /∈ A. Then x ∈ A
c

which is
an open set, and hence an open neighbourhood of x, so xλ is eventually in A

c
,

which is a contradiction. Therefore the limit of the net must lie in A, and so
A′ ⊆ A.

Conversely, assume that there is some x ∈ A\A′. This means that A ⊆ A′ ⊂
A, so A′ is not closed (else it would be the closure, by definition). Then A′c is
not open, so there must be some point x ∈ A′c so that every open neighbourhood
of x fails to be contained in A′c (otherwise it would satisfy the hypotheses of
Lemma 2.1.1, and so would be open). Let Λx be the set of open neighbourhoods
of x. Then Λx is a directed set when ordered by reverse inclusion, ie. U ≤ V
iff V ⊆ U . For each U ∈ Λx, we can find an element yU ∈ A′ ∩ U , and hence
an xU ∈ A ∩ U since there is some net in A converging to yU , and so it must
eventually be in U . Then (xU )U∈Λx

is a net, and clearly xU → x. But we have
just shown that x ∈ A′, contradicting our initial assumption.

This immediately gives us the following characterisation of closed sets:
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Corollary 2.3.2
Let (X, τ) be a topological space. A subset F of X is closed if and only if F
contains all its limit points.

In other words, if we know which nets converge, we can identify which sets
are closed, and hence which sets are open, so we can recover the topology.
Indeed, we could have started with the notion of convergence and defined the
core ideas of topology in terms of convergence, but this approach is not typical.
It does tell us, however, that whenever we define some notion of convergence in
analysis, such as pointwise convergence, or uniform convergence, that there is
likely some sort of topology involved.

Most arguments dealing with sequences transfer directly to nets. The fol-
lowing proposition should be familiar from metric space theory.

Proposition 2.3.3
If X and Y are topological spaces then a function f : X → Y is continuous
at x ∈ X if and only if for every net (xλ)λ∈Λ which converges to x, the net
(f(xλ))λ∈Λ converges to f(x).

Proof:
If f is continuous, then given any open neighbourhood V of f(x), we know

that f−1(V ) is a neighbourhood of x, and so there is some open neighbourhood
U of x, with U ⊆ f−1(V ). But since xλ → x, we know that xλ must eventually
lie in U , and so f(xλ) must eventually lie in f(U) ⊆ V . Hence f(xλ) is eventually
in V , so f(xλ) → f(x).

On the other hand, assume that xλ → x implies that f(xλ) → f(x) for all
convergent nets. If f is not continuous, then there is some neighbourhood V of
f(x), such that f−1(V ) is not a neighbourhood of x, or in other words it does not
contain any open neighbourhoods of x. Hence given any open neighbourhood
U of x, there is a point xU ∈ U ∩f−1(V )c. As in Proposition 2.3.1, (xU )U∈Λx is
a net, and xU converges to x. Hence f(xU ) converges to f(x), by assumption,
but also f(xU ) /∈ V for all U , so f(xU ) cannot converge to f(x). Therefore f
must be continuous.

Note that we require nets in this proposition, as it is possible to find topo-
logical spaces and functions for which every sequence converges as above, but
for which some more general nets do not. Fortunately it is usually not any more
difficult to consider nets in the place of sequences when proving theorems, as
most sequence arguments translate fairly directly to the more general setting,
as in the proposition above.

An obvious question which should arise is the question of what is the ana-
logue of a subsequence? If (xλ)λ∈Λ is a net, then a subnet (yθ)θ∈Θ is a net,
together with a map α : Θ → Λ with yθ = xα(θ) is increasing, in the sense that
if θ1 ≤ θ2, then α(θ1) ≤ α(θ2), and given any λ0 ∈ Λ, α(θ) ≥ λ eventually.

This is a slightly weaker definition than a subsequence, since we’re allowed
to go backwards or stay stationary, as long as we eventually get big. Also, our
directed set Θ could potentially be very different from the directed set Λ. In
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particular, subnets of sequences may not be subsequences, even if Θ = N with
the usual order. Never the less, subnets play the same role as subsequences.

Lemma 2.3.4
If (X, τ) is a topological space, and (xλ)λ∈Λ is a net in X, then xλ → x if and
only every subnet converges to x.

Proof:
If xλ → x, then given any open neighbourhood U of x, there is some λ0 with

xλ ∈ U for all λ ≥ λ0. But then given any subnet yθ = xα(θ), there is some
θ0 so that α(θ) ≥ λ0 for all θ ≥ θ0. So yθ = xα(θ) ∈ U for all θ ≥ θ0, and so
yθ → x.

On the other hand, if every subnet converges to x, but xλ does not then
there is some open neighbourhood U of x for which given any λ0 there is some
λ ≥ λ0 with xλ 6∈ U . Let Θ = {λ ∈ Λ : xλ /∈ U} ⊆ Λ, and give it the order from
Λ. Then Θ is directed, since if we have any θ1, θ2 ∈ Θ, there is some λ0 ∈ Λ
with λ0 ≥ θ1 and λ0 ≥ θ2, since Λ is directed. But then we have some λ ≥ λ0

with xλ 6∈ U , so λ ∈ Θ, and λ ≥ θ1, λ ≥ θ2. Moreover, (xθ)θ∈Θ is a subnet with
the trivial map α(θ) = θ, and clearly xθ does not converge to x, contradicting
our hypothesis. Hence xλ → x as well.

A subset Θ of a directed set Λ is cofinal if for each λ ∈ Λ, there is a θ ∈ Θ
with θ ≥ λ. For example, the set Θ in the proof of the above lemma is cofinal.
It is not hard to see, as in the above lemma, that a cofinal subset determines a
subnet of a net on Λ with α being the inclusion map. We can use cofinal sets
to give us the following result, which is sometimes useful:

Proposition 2.3.5
If (X, τ) is a topological space, and (xλ)λ∈Λ is a net in X, then xλ → x if and
only if for every cofinal Θ ⊆ Λ, there is a cofinal Γ ⊆ Θ such that (xγ)γ∈Γ → x.

Using this proposition to show convergence can be simpler than using the
previous lemma, because the collection of subnets of a particular net can be
quite wild.

Exercises

2.3.1. Let x be a point in a topological space (X, τ). If Nx is the set of all open
neighbourhoods of x, show that it is a directed set with order U ≤ V iff
V ⊆ U .

Show that if for every U ∈ Nx you choose any element xU of U , that the
net (xU )U∈Nx must converge to x.

2.3.2. Prove Proposition 2.3.5.

April 26, 2006 Version 0.8



80 General Topology

2.4 Bases and Sub-bases

As we saw with the example of the metric space topology, somtimes it is easier
to deal with a smaller or nicer subset of a topology, such as the set of open
balls. The hope is that we can prove things that we need to know by using this
smaller collection of sets. To know just how small we can go, we introduce the
concept of the base and sub-base of a topology.

Given any set E ⊆ P(X), there is a minimal topology τE such that E ⊆ τE ,
namely the topology that is the intersection of all the topologies containing E .
We say that E generates τ , or sometimes, that E is a sub-base of τ . If E ⊆ F ,Note: Some references call a

“base” a “basis” and a
“sub-base” a “subbasis.”

then τE ⊆ τF by simple set theoretic considerations.

Example 2.4.1
Let (X, d) be a metric space. The family of all open balls forms a sub-base

for the metric topology, τd.
Let τ be the topology generated by the open balls. As we saw in Exam-

ple 2.1.1, every open ball is in τd, so τ ⊆ τd. On the other hand, every set in
τd is a union of open balls, so every topology containing the open balls must
contain τd, and so τd is contained in the intersection. Thus τd ⊆ τ , and so
τ = τd. 3

Example 2.4.2
Let X be a set and C(X) the set of functions f : X → C. The topology of

pointwise convergence is the topology generated by sets of the form

{g ∈ C(X) : |f(x)− g(x)| < ε}

where f ∈ C(X), x ∈ X and ε > 0. 3

A neighbourhood base at x is a family N of open neighbourhoods of x,
and if A is a neighbourhood of x, then there is some B ∈ N with B ⊆ A.

Example 2.4.3
If (X, d) is a metric space, the open balls B(x, r) are a neighbourhood base

for every x ∈ X. 3

Example 2.4.4
If (X, d) is a metric space, the open balls B(x, 1/n), where n ∈ N are a

neighbourhood base for every x ∈ X. 3

A topological space is called first countable if it has a countable neighbour-
hood base. The above example shows that every metric space is first countable.
First countable spaces have the nice property that we can usually use sequences
instead of nets, as show in Exercise 2.4.5 below.

April 26, 2006 Version 0.8



2.4. Bases and Sub-bases 81

A collection of open sets B ⊆ τ is a base for τ if B contains a neighbourhood
base for every point x ∈ X. A topological space is second countable if it has
a countable base.

Example 2.4.5
If (X, d) is a metric space, the collection of all open balls is a base. 3

Example 2.4.6
In particular, in Rn using the metrics

d2(x, y) =
√∑

k

(xk − yk)2

and
d∞(x, y) = max

k
|xk − yk|,

which both give the usual topology on Rn, we get that the collection of all open
spheres, and the collection of all open rectangles are bases for the topology on
Rn. 3

Bases for topologies can be made to play similar roles to those of open balls in
metric spaces. Compare the proof of the following proposition to the discussion
of open sets in Example 2.1.1 and Lemma 2.1.1.

Proposition 2.4.1
Given a topological space (X, τ), B is a base iff every open set is a union of
elements of B.

Proof:
If B is a collection of sets such that every open set is a union of elements of

B, then given x ∈ X and anu neighbourhood N of x, there is some open neigh-
bourhood U of x with U ⊆ N . We can write U as a union of sets Bα for α ∈ I,
and so x ∈ Bα′ for some particular α′ ∈ I. But then Bα′ is an open neighbour-
hood of x contained in U , and therefore N . Hence B is a neighbourhood base
for x, and since x was arbitrary, B is a base.

Let B be a base of (X, τ), and let U be any open set. If x ∈ U , then there
is some Bx ∈ B so that Bx ⊆ U . But then

U =
⋃

x∈U

Bx,

and so every open set is a union of elements of the base.

Note that we consider the empty set to be the trivial union of an empty
collection of sets.

We note that a base is automatically a sub-base.
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Corollary 2.4.2
Let (X, τ) be a topological space and B a base for this topology. Then the
topology generated by B is τ .

Proof:
Let τB be the topology generated by B.
By the previous proposition, every element of τ is a union of elements of B,

so τ ⊆ τB. On the other hand, by definition, the elements of B are all elements
of τ , so τ is a topology containing B and so τB ⊆ τ .

Therefore τ = τB.

We might ask when a collection of sets is a base, rather than a sub-base for
the topology it generates.

Lemma 2.4.3
Let X be a set. Given a collection B of susbsets of X which B satisfy the
conditions:

(i) if every x ∈ X is an element of some B ∈ B,

(ii) if A and B ∈ B and x ∈ A ∩ B, then there is some C ∈ B with
x ∈ C ⊆ A ∩B,

then the collection of all unions (including the empty union) of elements of B is
a topology, and B is a base for that topology.

Proof:
To verify that τ is a topology, we only need to verifiy that finite intersections

of sets in τ are also in τ , and that X ∈ τ . It is easy to see that (i) implies that
X ∈ τ , since if Bx is the lement of B given by (i),

X =
⋃

x∈X

Bx ∈ τ.

We let U1, U2 be sets in τ . Then for any x in the intersection of these sets, x ∈ Uk

for k = 1, 2, and since these are unions of elements of B, we can find Bk ⊆ Uk

with x ∈ Bk. But then there is some Cx ∈ B with x ∈ Cx ⊆ B1 ∩B2 ⊆ U1 ∩U2.
We then have that

U1 ∩ U2 =
⋃

x∈U1∩U2

Cx ∈ τ.

Repeated application of this result gives that τ is closed under finite intersec-
tions.

Now if x ∈ X and N is any neighbourhood of x, there is some U ∈ τ with
x ∈ U ⊆ N . But U is a union of elements of B, so there is some B ∈ B with
x ∈ B ⊆ U . Hence B is a neighbourhood base at x, and since x was arbitrary,
it is a base for τ .

Note that since B is a base for τ , the previous corollary shows that τ is
generated by B.

We can now precisely characterise the topology generated by a family of sets:
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Proposition 2.4.4
Given a topological set X, and E ⊆ P(X), the topology generated by E is the
collection consisting of ∅, X, and all unions of finite intersections of sets in E .

Proof:
Let B be the collection of all finite intersections of elements of E , together

with ∅ and X. Then B satisfies the conditions of the previous lemma. (i) follows
trivially from the fact that X ∈ B. If A and B ∈ B have non-trivial intersection,
then either A or B is X, in which case (ii) follows trivially, or A = E1∩ . . .∩En

and B = F1 ∩ . . . ∩ Fm, with Ek, Fj ∈ E , k = 1, . . . , n, j = 1, . . . ,m. But then

C = (E1 ∩ . . . ∩ En) ∩ (F1 ∩ . . . ∩ Fm) ∈ B.

So the topology, τB, generated by B, has B as a base.
If τ is the topology generated by E , it is straightforward that B ⊆ τ , and so

τB ⊆ τ . On the other hand, E ⊆ B, and so τ ⊆ τB. Hence τ = τB, and we are
done.

Now that we have established these facts about bases and sub-bases, we can
use them to simplify what we need to check when considering continuity and
convergence.

Proposition 2.4.5
Let (X, τX) and (Y, τY ) be topological spaces, f : X → Y and B is a sub-base
for Y . Then f is continuous if and only if f−1(U) is open for every U ∈ B.

Proof:
Clearly if f is continuous, then the inverse image of every element of the

sub-base is open in X because every element of the sub-base is open in Y .
On the other hand, if U is any open set in Y , we can write U as a union of

finite intersection of sets in B, ie.

U =
⋃
α∈I

nα⋂
k=1

Vα,k.

But then

f−1(U) =
⋃
α∈I

nα⋂
k=1

f−1(Vα,k),

and f−1(Vα,k) is open for all α and k by the hypothesis, and so f−1(U) is open.

Proposition 2.4.6
Let (X, τX) and (Y, τY ) be topological spaces, f : X → Y and Nx an open
neighbourhood base for x ∈ X, and Nf(x) an open neigbourhood base for f(x).
The f is continuous at x if and only if for every U ∈ Nf(x) there is some V ∈ Nx

such that V ⊆ f−1(U).
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Proof:
If f is continuous at x ∈ X, then f−1(U) is a neigbourhood of x, so we

can find some element V ∈ Nx so that V ⊆ f−1(U) by the definition of a
neighbourhood base.

On the other hand, let U be any open neighbourhood of x. We have some
U ′ ⊆ U with in U ′ ∈ Nf(x). This means that there is some V ⊆ f−1(U ′)
with V ∈ Nx, by hypothesis. But then V ⊆ f−1(U), so that f−1(U) is a
neighbourhood of x, and so f is continuous at x.

These two propositions are very useful for proving continuity, since it is far
easier to work with some nice sub-base or neighbourhood base in Y than with
some arbitrary open set. Indeed, it is this way that we see that the definition
of continuity that we know from undergraduate real analysis corresponds to the
definition given above.

Example 2.4.7
The above proposition leads to the classical ε-δ definition of continuity. We

know that for a metric space, the open balls B(x, ε) are a neighbourhood base
at x, so the above proposition tells us that if (X, dX) and (Y, dY ) are metric
spaces, and f : X → Y , then f is continuous at x if and only if for all ε > 0,
there exists a δ > 0, such that

B(x, δ) ⊆ f−1(B(f(x), ε)),

or when you unravel the definitions, d(f(x), f(y)) < ε for all y with d(x, y) < δ.
The definition for continuity on X follows from Proposition 2.2.1. 3

Example 2.4.8
This connection between continuity ans bases leads us to be able to define

topologies in terms of functions. If X is any set and fα : X → Yα is a family of
maps into topological spaces Yα for all α in an index set I, the weak topology
on X generated by this family is the weakest topology which makes all the maps
fα continuous. This is simply the topology generated by the sets f−1

α (A) where
A is any open set in Yα, and α is any element of I.

In the opposite direction if you have functions fα : Yα → X, then the strong
topology generated by this family of functions is the strongest topology for
which all these functions are continuous. This is the topology generated by the
sets A where f−1

α (A) is open for all α ∈ I. 3

If (X, τ) is a topological space, and ∼ is an equivalence relation on X, then
the quotient topology on X/ ∼ is the strong topology given by the quotient
map q : X → X/ ∼.

If Xα is a family of topological spaces for α in some index set I, the product
topology is the topology on the cross product of the Xα,

∏
α∈I Xα, which is

generated by the projection maps

πα :
∏
β∈I

Xβ → Xα
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given by πα(x) = xα where x = (xβ)β∈I ∈
∏

i∈β Xβ .
For finite products, the family of sets

∏n
i=1 Ui where Ui is an open set in

Xi forms a base for the product topology, because every such set is a finite
intersection of the geenrating sets.

Example 2.4.9
The usual metric space topology on Rn is the same as the topology that you

get by considering it as the product of n copies of R with the usual topology.
In particular, open boxes are a base for the usual topology on Rn. 3

Neighbourhood bases are also useful for proving that a net converges.

Proposition 2.4.7
Let (X, τ) be a topological space, (xλ)λ∈Λ be a net in X, and N an open
neighbourhood base of x. Then xλ converges to x if and only if given any
U ∈ Nx we have xλ in U eventually.

Proof:
The “if” part of this proposition follows directly from the definition of con-

vergence.
On the other hand, if U is any open neighbourhood of x, then there is some

V ⊆ U , with V ∈ Nx, and by hypothesis, xλ ∈ V eventually. Therefore xλ ∈ U
eventually, and so xλ → x for λ ∈ Λ.

Again, this has particular utility for showing that the definition of conver-
gence for sequences in metric spaces corresponds to the definition given above.

The previous proposition in particular is useful for nailing down the topolo-
gies that correspond to different notions of convergence for sequences of func-
tions.

Example 2.4.10
Let X be any set, and (Y, τY ) any topological space. Let F (X,Y ) be the set

of all functions f : X → Y . We say that a net (fλ)λ∈Λ of functions in F (X,Y )
converges pointwise to f ∈ F (X,Y ) if and only if

lim
λ∈Λ

fλ(x) = f(x)

for all x ∈ X.
Consider the collection of subsets of F (X,Y )

Ux,V = {f ∈ F (X,Y ) : f(x) ∈ V }

where x ∈ X, and V ∈ τY . Let τpw be the topology generated by the sets Ux,V .
The (fλ)λ∈Λ converges to f in τpw if and only if fλ → f pointwise.
This is the same topology that you get by identifying F (X,Y ) with the

cartesian product
∏

x∈X Y by regarding f : X → Y as the element f = (fx)x∈X ,
where fx = f(x), and giving both spaces the product topology. 3
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Example 2.4.11
Let X be any set, and (Y, d) a metric space. We say that a net (fλ)λ∈Λ in

F (X,Y ) converges uniformly to f ∈ F (X,Y ) if

lim
λ∈Λ

sup |fλ − f | → 0.

This is precisely convergence in the topology τu generated by the collection
of sets

Uf,r = {g ∈ F (X,Y ) : sup |g − f | < r}

where f ∈ F (X,Y ) and r > 0. In fact the collection of such Uf,r for fixed f is
a neighbourhood base for f , so this collection of sets is in fact a base.

The identity function id : F (X,Y ) → F (X,Y ) is continuous from the topol-
ogy of uniform convergence to the topology of pointwise convergence, because
given any x ∈ X, and V ∈ τd, and f ∈ Ux,V , we can find an rf > 0 such that
B(f(x), r) ⊆ V , and then Uf,rf

⊆ Ux,V . Hence

id−1(Ux,V ) =
⋂

f∈Ux,V

Uf,rf
,

which is open.
As a corollary, if (fλ)λ∈Λ ∈ F (X,Y ) converges in the uniform topology toNote: It’s pretty easy to prove

this fact directly. f , then it converges pointwise. 3

Exercises

2.4.1. Show that the family of sets

E = {(a,∞) : a ∈ R} ∪ {(−∞, b) : b ∈ R}

is a sub-base of the usual topology on R.

2.4.2. Show that every second countable topological space is separable.

2.4.3. Show that a metric space (X, d) is second countable if and only if it is
separable.

2.4.4. Let (X, τ) be a first countable topological space. If x ∈ X, show that the
countable neighbourhood base Nx = {Un : n ∈ N} of x may be chosen in
such a way that Un ⊃ Un+1.

2.4.5. Let (X, τ) be a first countable topological space. If A is any subset of X,Note: this exercise shows that
we can usually use sequences
instead of nets in first countable
topological spaces.

show that x is a limit point of A if any only if there is a sequence xn ∈ A
which converges to x.

Let (Y, τY ) be any topological space. Show that f : X → Y is continuous
at x if and only if for every sequence xn → x, f(xn) → xn.
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2.5 Compact Sets

An important notion in topology and analysis is the concept of a compact set.
In Rn these are the closed, bounded sets, and so theorems which involve closed
bounded sets are likely to generalize to theorems involving compact sets. For
example, a real-valued, continuous function on a closed, bounded subset of R
attains its maximum and minimum values. Also, if we have a sequence in a
closed, bounded set in Rn, the Bolzano-Weierstrauss theorem tells us that there
must be a convergent subsequence. This second fact is key in one way of looking
at compact sets in general topological spaces.

Compact sets can be defined in a number of equivalent ways, so we first
introduce some terminology.

Definition 2.5.1
A given a set X and some set K ⊆ X, we say that a family of sets E covers K
if

K ⊆
⋃

E∈E
E.

A subcover of a cover E is any family of sets F ⊆ E which is still a cover of K.
A cover is finite if it contains a finite number of sets.

If (X, τ) is a topological space, and K ⊆ X, an open cover of K is any
cover U of K which consists of open sets.

Example 2.5.1
The family of sets U = {(n− 1, n+ 1) : n ∈ N} is an open cover of R. 3

Definition 2.5.2
If (X, τ) is a topological space, and K ⊆ X, we say that K has the finite
intersection property if whenever we have a family, F , of closed sets with
the property that

(F1 ∩ F2 ∩ . . . ∩ Fn) ∩K 6= ∅ (2.1)

for any F1, F2, . . . Fn ∈ F , then( ⋂
F∈F

F

)
∩K 6= ∅.

Example 2.5.2
R does not have the finite intersection property, because the family of closed

sets
F = {[a,∞) : a ∈ R}

satisfies (2.1), because

[a1,∞) ∩ [a2,∞) ∩ . . . ∩ [an,∞) = [max{a1, a2, . . . , an},∞) 6= ∅,
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but ⋃
a∈R

[a,∞) = ∅.

3

It turns out that these two ideas are closely related, and moreover, are linked
to convergence properties of nets.

Theorem 2.5.1
Let (X, τ) be a topological space, andK ⊆ X. Then the following are equivalent:Note: if (X, τ) is first countable,

we can replace nets with
sequences in this theorem. (i) Every open cover of K has a finite subcover.

(ii) K has the finite intersection property

(iii) every net in K has a subnet which converges in K.

(iv) every infinite subset of K has an accumulation point.

Definition 2.5.3
If (X, τ) is a topological space, a set K satisfying any one of the above equivalent
conditions is called a compact set. If the X itself is compact, we sat that it is
a compact topological space.

A set whose closure is compact is called precompact.

Proof:
Theorem 2.5.1 (i) ⇔ (ii): This follows essentially from DeMorgan’s laws.

Assume that every open cover of K has a finite subcover, but that K does not
satisfy the finite intersection property. So there is a family, F , of closed sets
with the property that

(F1 ∩ F2 ∩ . . . ∩ Fn) ∩K 6= ∅

for any F1, F2, . . . Fn ∈ F , but( ⋂
F∈F

F

)
∩K = ∅,

or in other words, K is contained in the complement of the intersection. But
letting E = {F c : f ∈ F}, and applying DeMorgan’s laws, we have that

K ⊆

( ⋃
F∈F

F c

)
,

and so E is an open cover of K. However given any finite subset F c
1 , F

c
2 , . . . , F

c
n

of E , we from our assumption, and DeMorgan’s laws, that

K 6⊆ (F1 ∩ F2 ∩ . . . ∩ Fn)c = F c
1 ∪ F c

2 ∪ . . . ∪ F c
n.
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There are no finite subcovers of K, which contradicts our original assumption.
Hence K satisfies the finite intersection property.

Conversely, assume that F satisfies the finite intersection property, but that
there is some open cover E that does not have a finite subcover. This means
that if we let F = {Ec : E ∈ E}, then given any finite collection Ec

1, . . . E
c
n ∈ F ,

we have

(Ec
1 ∩ Ec

2 ∩ . . . ∩ Ec
n) ∩K = (E1 ∪ E2 ∪ . . . ∪ En)c ∩K 6= ∅,

since the Ek, k = 1, . . . , n cannot be a cover. So by the finite intersection
property, (⋂

E∈E
Ec

)
∩K = ∅,

but this means that (⋃
E∈E

E

)c

∩K = ∅,

meaning our original set was not a cover, which contradicts our assumption.
Hence every open cover of K has a finite subcover.

The remaining results will be omitted for the time being. In fact, I should
probably put this into a technical details section.

The following two facts follow almost immediately from the above theorem
and definition.

Lemma 2.5.2
Let F be a closed subset of a compact set K in a topological space (X, τ). Then
F is compact.

In a metric space, there is another, equivalent way of talking about compact
sets. We would like to say that a set is compact if it is closed and bounded,
as is the case in Rn, but this is not true in general for metric spaces. We do
know that metric spaces are Hausdorff, and so the following lemma tells us that
compact sets in metric spaces are closed.

Lemma 2.5.3
A compact subset K of a Hausdorff (see the next section) topological space
(X, τ) is closed.

The following example shows us why boundedness does not suffice.

Example 2.5.3
Let X be an infinite set with the discrete metric. Then X is a bounded

set, since every point is at most distance 1 from any other. However, it is not
compact, since the collection of singleton sets E = {{x} : x ∈ X} is an open
cover of X, but it has no finite cover. 3

To replace boundedness, we have to use a slightmly more general concept.
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Definition 2.5.4
A is totally bounded if for every ε > 0, there is a finite collection of sets
B1, . . . , Bn ⊂ A (where both n and the sets Bj may depend on ε) such that

A =
n⋃

j=1

Bj

and diam(Bj) < ε for all j = 1, . . . , n.

Theorem 2.5.4
Let (X, d) be a metric space, and K ⊆ X. Then K is compact if and only if it
is closed and totally bounded.

The following theorem is a special case of the above, which tells us that
compact sets to indeed generalise the closed bounded sets in Rn.

Theorem 2.5.5 (Heine-Borel Theorem)
Let K be a subset of Rn with the usual metric topology. K is compact if and
only if it is closed and bounded.

Compact sets have quite a number of useful properties. In particular, it
makes sense to look at versions of facts we know involving closed and bounded
sets in Rn.

Proposition 2.5.6
Let (X, τX) and (Y, τY ) be topological spaces, and let f : X → Y be a continuous
function. If K ⊆ X is a compact set, f(K) ⊆ Y is also compact.

Corollary 2.5.7
Let (X, τX) be a topological space, and f : X → R be continuous with the usual
topology on R. If K is a compact set in X, then there are points a and b ∈ K
such that

f(a) = sup{f(x) : x ∈ K} and f(b) = sup{f(x) : x ∈ K}.

That is, f achieves its maximum and minimum values on K.

Corollary 2.5.8
Let (X, τX) and (Y, τY ) be topological spaces, with X compact. If f : X → Y
is a continuous bijection, then f−1 is continuous, ie. f is a homeomorphism.

We conclude with an important theorem:

Theorem 2.5.9 (Tychonoff’s Theorem)
Let (Xα, τα) for α ∈ I be a family of compact topological spaces. Then the
product space ∏

α∈I

Xα

with the product topology is compact.

The proof of this fact relies on the Axiom of Choice, and in fact one can
show that Tychonoff’s Theorem is equivalent to the Axiom of Choice.
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Exercises

2.5.1. Let (X, τX) be a compact space, and let (fλ)λ∈Λ be a net of functions in
C(X,R) which is increasing in the sense that if λ1 ≤ λ2, then fλ1(x) ≤
fλ2(x) for all x ∈ X, and which converges pointwise to a continuous
function f . Show that fλ converges uniformly to f .

2.5.2. Let (X,≤) be a totally ordered set. The order topology is the topology
on X generated by the sets {y : x < y} and {y : y < x} for all x ∈ X.
A subset A of X is order bounded if there are x and z ∈ X such that
x ≤ y ≤ z for all y ∈ A. Recall that X is (order) complete if every order
bounded set has an infimum and a supremum.

Show that X is order complete if and only if every closed, order bounded
subset of X is compact.

2.5.3. Let X be any set, and T the unit circle of C. Show that T with multipli-
cation is a compact topological group. Show that

TX =
∏
X

T

is a compact topological group.

If G is a group with the discrete topology, let Ĝ = hom(G,T) be the dual
group of all group homomorphisms from G → T, with the product and
inverse (α1α2)(g) = α1(g)α2(g) and α−1(g) = (α(g))−1. Show that Ĝ is
a compact topological group.

If G is a compact topological group, show that the dual group Ĝ of all
continuous group homomorphisms α : G→ T is a topological group with
the discrete topology.

Show that T̂ = Z and Ẑ = T.

2.6 Separation and Extension

As you may have guessed, particularly from examples like Example 2.3.5, topolo-
gies can have radically different propoerties that what you would expect from
your knowledge of convergence and continuity in Rn, or even your understanding
of metric space topology. Fortunately, the “bad” behaviour exhibited by some
examples does not often occur in the topologies which arise from examples in
analysis.

Most of this odd behaviour occurs because the topology cannot distinguish
points. In Example 2.3.5, we get two limits two a sequence simply because
we cannot separate the two points 0+ and 0− into their own open sets. To
understand and regulate these pathologies, we introduce some new conditions
on topological spaces, called the spearation axioms.

Definition 2.6.1 (Separation Axioms)
If (X, d) is a topological space, we say that it is: Note: Some references do not

require regular or normal spaces
to be T1.
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• T0 if for every pair of distinct points x, y ∈ X, there is an open set U with
either x ∈ U and y /∈ U , or y ∈ U and x /∈ U .

• T1 if for every pair of distinct points x, y ∈ X, there is an open set U with
x ∈ U and y /∈ U .

• T2, or Hausdorff, if for every pair of distinct points x, y ∈ X, there are
disjoint open sets U and V with x ∈ U and y ∈ V .

• T3, or regular, if it is T1 and for every x ∈ X and closed set F ⊂ X with
x /∈ F , there are disjoint open sets U and V with x ∈ U and F ⊆ V .

• T4, or normal, if it is T1 and for every pair of disjoint closed sets E,
F ⊂ X, there are disjoint open sets U and V with E ⊆ U and F ⊆ V .

An alternative way of considering axiom T1 is given by the following lemma.

Lemma 2.6.1
(X, d) is T1 if and only if every singleton set {x}, for x ∈ X, is closed.

Proof:
If (X, d) is T1, then the set {x}c is open because if y 6= x, then there is an

open set Uy with y ∈ Uy and x /∈ Uy, and so

{x}c =
⋃

y∈{x}c

Uy.

Hence {x} is closed.
On the other hand if every singleton set is closed, then given distinct points

x and y ∈ X, the set U = {y}c is open and x ∈ U , y /∈ U , and so (X, d) is T1.

With this lemma in hand it is easy to see that T4 =⇒ T3 =⇒ T2 =⇒
T1 =⇒ T0. One can come up with examples of topological spaces which show
that the reverse implications do not hold.

Example 2.6.1
If (X, d) is a metric space, then the metric topology is easily seet to be

Hausdorff: given distinct points x and y, let r = d(x, y)/3 and let U = B(x, r),
V = B(y, r). Clearly U and V are disjoint by the triangle inequality, and we
know that they are open.

In fact, metric spaces are always normal, but we need some additional con-
cepts before we can easily show this fact. 3

Example 2.6.2
If X is a set with at least 2 distinct points, the trivial topology on X satisfies

none of the separation axioms. 3
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Example 2.6.3
If X = {a, b} and τ = {∅, {a}, X}, then (X, τ) is a topological space which

is T0, but not T1. 3

We have to go to infinite sets to get an example which is T1 but not T0.

Example 2.6.4
If X is any infinite set, and τ is the cofinite topology, ie. the collection of

all sets whose complement is finite, then (X, τ) is a topological space which is
T1, but not T2. 3

The following lemma tells us that if a space is T2, then that is sufficient to
ensure that if a net converges, it converges to only one point, so something like
Example 2.3.5 cannot occur.

Lemma 2.6.2
If (X, τ) is a T2 topological space, and a net (xλ)λ∈Λ converges to both x and
y in X, then x = y.

Proof:
Assume that the net (xλ)λ∈Λ converges to both x and y in X, but x 6= y.

Then we can find disjoint open sets U and V such that x ∈ U , y ∈ V . But then
xλ is eventuall in U , and is also eventually in V , so it must eventually be in
U ∩ V , but this is the empty set, so we have a contradiction.

Note that we can have bad convergence properties even in a T1 space:

Example 2.6.5
Let (X, τ) be as in Example 2.6.4, and let (xn)∞n=1n be any sequence in X

such that xn 6= xm for n 6= m. Then xn is eventually in any open set (because
every open set excludes at most a finite number of points), so xn converges to
every point of X. 3

Hopefully some of these examples illustrate that topologies can, in general,
be very different from the intuition that you may have developed from metric
space theory or Rn. However, the topologies which occur in analysis tend not
to be too strange. Most are at least Hausdorff, and at worst they are T1.

In certain circumstances we want to know when we can find continuous
functions with certain properties, such as taking certain values on certain subsets
of our topological space. For concrete spaces, such as Rn, this is not usually
an issue because we can usually explicitly construct the function if we have to.
However, if we are trying to prove general results we usually don’t have this
luxury.

There are two typical sorts of situations. The first is that we want to find
a continuous function which takes value a on a set A, and b on a set B. The
second sort of situation is that we have a function defined on a subset of out
topological space which is continuous in the relative topology. Can we extend
this function to a continuous function on the whole space?
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A little thought should tell you that the first situation for certain sets is
closely related to the separation axioms discussed in the first section. For ex-
ample, if we know that for any closed sets A and B we can find a continuous
function f with f |A = a and f |B = b, then f−1(B(a, ε)) and f−1(B(b, ε)), where
0 < ε ≤ |b− a|/2 are two disjoint open sets containing A and B respectively. In
other words, we should only expect to be able to do this if the topological space
is normal.

The first result shows that this example in fact characterizes normal topo-
logical spaces.

Theorem 2.6.3 (Urysohn’s Lemma)
Let (X, τ) be a normal space, and E, F disjoint closed sets in X. Then there is
a continuous function f : X → R where f(E) = {0} and f(F ) = {1}.

Once one has Urysohn’s lemma for normal spaces, it is not difficult to show
that one can extend a function from a closed subset to the whole set.

Theorem 2.6.4 (Tietze Extension Theorem)
Let (X, τ) be a normal space. If F is a closed subset of X, and f ∈ C(F, [a, b]),
then there is a function f ∈ C(X, [a, b]) such that f

∣∣
F

= f .

Corollary 2.6.5
Let (X, τ) be a normal space. If F is a closed subset of X, and f ∈ C(F ), then

there is a function f ∈ C(X) such that f
∣∣
F

= f .

If instead of considering all closed subsets, we restrict our focus to certain
classes of closed subsets, we get some additional results. The most natural
restrictions are to make one of the closed sets either a compact set, or a single
point.

A topological space (X, τ) is called completely regular, T3.5, or Tychanoff
if it is T1 and for each closed subset F of X, and every x /∈ F , there is a function
f ∈ C(X, [0, 1]) such that f(x) = 1 and f = 0 on F . Every T31/2 space is T3,
and Urysohn’s Lemma shows that every T4 space is T31/2.

A topological space which is locally compact and Hausdorff is often called
an LCH space.

Theorem 2.6.6 (Urysohn’s Lemma)
Let (X, τ) be a LCH space, and K ⊆ U ⊆ X, where K is compact and U is
open. Then there is a continuous function f : X → R where f(K) = {1} and
f = 0 outside of some compact subset of U .

This version of Urysohn’s lemma allows us to conclude that every LCH space
is automatically completely regular, and hence regular, since given a closed set
F and a point x /∈ F , we let K = {x} and U = F c.

There is also an extension-type theorem in this setting.
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Theorem 2.6.7 (Tietze Extension Theorem)
Let (X, τ) be an LCH space. If K is a compact subset of X, and f ∈ C(K),
then there is a function f ∈ C(X) such that f

∣∣
F

= f , and moreover, one can

also guarantee that (f) = 0 outside some compact set.

Exercises

1. Show that the topology of Exercise 2.1.1 is T0 but not T1.

2. Let (X, τ) be a topological space where X is a finite set. Show that if
(X, τ) is T1, then X must have the discrete topology.

3. Show that a topological space is normal if and only if it satisfies the
conclusion

4. Let (X, d) be a metric space. Given a set A and B ⊂ X, define

d1(x,A) = inf{d(x, a) : a ∈ A}

and
d2(A,B) = sup{d(a,B) : a ∈ A}.

Show that d2 is a metric on the closed sets of the topology.

Let F be a closed set. Show that

ρF (x) = d1(x, F )

is a continuous function. Use this to show that any metric space is com-
pletely regular.

Show that (X, d) is normal.

2.7 Function Spaces

We will be concerned with certain spaces of functions later on, and in many
cases the continuous functions will be an important subset. For example, we
have already seen that Lebesgue measurable functions include all continuous
functions. From undergraduate real analysis you should know that there are
several ways of topologising spaces of continuous functions. We’ll look at two
important theorems about sets of continuous functions. In both cases we want
to consider C(X) with the uniform topology, and in both cases the theorem
applies if X is a compact Hausdorff space (so C(X) = Cb(X)). Also

du(f, g) = sup
x∈X

|f(x)− g(x)|

is in fact a metric, since it can never be infinite.
The first tells us what the uniformly compact sets of functions are. A set of

functions f ∈ F ⊆ C(X) is equicontinuous at x if for every ε > 0, there is an
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open neighbourhood U of x so that |f(x)− f(y)| < ε for all y ∈ U and f ∈ F .
It is equicontinuous if it is equicontinuous at each x ∈ X. A set of functions
is pointwise bounded if {f(x) : f ∈ F} is a bounded susbset of R.

Theorem 2.7.1 (Arzela-Ascoli)
IfX is a compact Hausdorff space, and F is a pointwise bounded, equicontinuous
subset of C(X), then F is totally bounded in the uniform metric, and so the
closure of F is compact.

The second theorem tells us about dense sets in C(X). A subset A of C(X)
separates points if given any x, y ∈ X, there is some f ∈ A such that
f(x) 6= f(y). It vanishes nowhere if for every x ∈ X there is some f ∈ A
such that f(x) 6= 0. A subset of A is a subalgebra of C(X) if it is a vector
subspace of C(X) which is closed under multiplication of functions. If we are
considering complex-valued functions, A is self-adjoint if f ∈ A for all f ∈ A.

Theorem 2.7.2 (Stone-Weierstrauss)
If X is a compact Hausdorff space, and A is a subalgebra of C(X,R) (or a self-
adjoint subalgebra of C(X,C)), and it separates points and vanishes nowhere,
then A is uniformly dense in C(X).

This has the following very useful corollary (which was actually discovered
first):

Corollary 2.7.3 (Weierstrauss Approximation Theorem)
If X is a compact subset of Rn with the usual metric topology, then the restric-
tion to X of all real polynomial functions in n unknowns is uniformly dense in
C(X,R).

In other words, we can find polynomials which are as close as we like (uni-
formly) to any continuous function on X.

Exercises

2.7.1. Let T be the unit circle in C. A complex trigonometric polynomial
on T is a function of the form

f(z) =
n∑

k=−n

ckz
k.

where ck are complex constants. Show that the set of all trigonometric
polynomials is dense in C(T,C).

2.7.2. Show that the set of all real trigonometric polynomials, ie. functionsHint: relate these functions to
functions on T and use the
previous exercise.

of the form

f(x) = a0 +
n∑

k=1

(ak cos kx+ bk sin kx),

where ak, bk are real constants, is dense in the set of all functions f ∈
C([0, 2π]) with f(0) = f(2π).
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Chapter 3

Measure Theory

3.1 General Measure Spaces

Now that we have some topology under our belts, our aim is to generalise the
ideas of Chapter 1 to arbitrary situations. Just as with the Lebesgue measure
on R, our starting point is the concept of a σ-algebra

Definition 3.1.1
Let X be any set. A family A of subsets of X is an algebra if X ∈ A, and
whenever A, B ∈ A, then A ∪B and Ac are both in A. A family M of subsets
of X is an σ-algebra if X ∈M, if whenever Ak ∈M, for k ∈ N, then

∞⋃
k=1

Ak ∈M,

and if A ∈M, then Ac ∈M.

A pair (X,M) where X is a set, and M is a σ-algebra of sets in X is called
a measurable space. The sets in M are called measurable sets.

In other words, an algebra is closed under finite unions and complements,
while a σ-algebra is closed under countable unions and complements.

Example 3.1.1
Let X be any set. Then P(X) is a σ-algebra. 3

Example 3.1.2
Let X be any set. Then {∅, X} is a σ-algebra. 3

The basic results we had for algebras and σ-algebras in R all hold for general
algebras and σ-algebras.
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Lemma 3.1.1
Let A be an algebra which is closed under disjoint countable unions, ie. given
any family of sets Ak ∈ A such that Ak ∩ Al = ∅ for k 6= l, the union of these
sets ins in the algebra. Then A is a σ-algebra.

Proof:
See Lemma 1.2.4.

Proposition 3.1.2
If A is an algebra of sets, and A, B ∈ A, then ∅ ∈ A, A ∩ B, A \ B ∈ A and
A4B ∈ A.

If A is a σ-algebra, and Ak ∈ A for all k ∈ N, then

∞⋂
k=1

Ak ∈ A.

Proof:
See Exercise 1.2.1.

On occasion we will want to extend some collection of sets, often an algebra
of sets, to a full-blown σ-algebra. Inspired by our discussion of bases and sub-
bases of topological spaces, we note the following fact:

Lemma 3.1.3
Let X be any set, and Mα, α ∈ I, any collection of σ-algebras on X. Then

M =
⋂
α∈I

Mα

is a σ-algebra.

Proof:
Clearly X ∈Mα for all α ∈ I, so X ∈M.
If Ak, k ∈ N is a countable collection of sets in M, then

∞⋃
k=1

Ak ∈Mα

for all α ∈ I, and hence the union is in M.
Similarly, if A ∈M, then Ac ∈Mα for all α ∈ I, and so Ac ∈M.

Definition 3.1.2
Let X be any set, and E any collection of subsets of X. The σ-algebra ME
generated by E is the smallest σ-algebra which contains E , or equivalently,
the intersection of all σ-algebras containing E .

If (X, τ) is a topological space, then the σ-algebra BX generated by τ is
called the Borel σ-algebra of the topological space. An element of B is called
a Borel set
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3.1. General Measure Spaces 99

We note that if E and F are both families of subsets of X, and E ⊆ F , then
E ⊆ F . This observation will be useful in a number of proofs.

The Borel σ-algebras are important as a class of natural σ-algebras to con-
sider when we want to think about integrating continuous functions on X. A
little thought tells us that the Borel σ-algebra must contain all open sets, all
closed sets, all countable intersections of open sets, all countable unions of closed
sets, all countable unions of countable intersections of open sets, etc. In the liter-
ature the various permutations of countable intersections and unions are labelled
as follows: countable intersections of open sets are Gδ sets, countable unions Note: δ comes from

“durschnitt,” the German for
intersection; and σ comes from
“summe,” the German word for
union.

of closed sets are Fσ sets, countable unions of Gδ sets are Gδσ sets, countable
intersections of Fσ sets are Fσδ sets, etc.

Example 3.1.3
Of particular interest is the Borel σ-algebra BR on R with its usual topology,

as this will be key in defining the functions that we can attempt to integrate.
If L is the set of Lebesgue measurable sets on R, then we note that since

every open set is Lebesgue measurable, BR ⊆ L.
In fact there are sets which are Lebesgue measurable, but not Borel. 3

However, just as with topology, it can be a hassle to have to work with
arbitrary open sets in R. The following lemma, which is closely related to
Proposition 1.6.1 makes our life somewhat simpler.

Lemma 3.1.4
The Borel σ-algebra on R is generated by the following collections of sets:

(i) E1 = {(a,∞) : a ∈ R}

(ii) E2 = {[a,∞) : a ∈ R}

(iii) E3 = {(−∞, b) : a ∈ R}

(iv) E4 = {(−∞, b] : a ∈ R}

(v) E5 = {(a, b) : a, b ∈ R}

(vi) E6 = {[a, b] : a, b ∈ R}

(vii) E7 = {(a, b] : a, b ∈ R}

(viii) E8 = {[a, b) : a, b ∈ R}

(ix) E9, the collection of all closed sets in R.

The proof of this lemma is very closely related to Proposition 1.6.1, and so
will be left as an exercise.

The second ingredient in the integration theory of Chapter 1 was the concept
of a measure. Again, this transfers painlessly across to the general setting:
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Definition 3.1.3
A function whose domain is an algebra is called a set function. A set function
µ : A → [0,∞] is additive if given two disjoint sets A, B ∈ A,

µ(A ∪B) = µ(A) + µ(B).

A set function on a σ-algebra A is σ-additive (or countably additive) if given
Ak ∈ A, for k ∈ N, with the Ak disjoint,

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak)

A σ-additive set function for which µ(∅) = 0 is called a measure.
We will call a triple (X,M, µ), where X is a set, M a σ-algebra, and µ a

measure a measure space.

We will often regard the σ-algebra as a secondary object implicit in the
definition of the measure µ. In this case we call the sets in M µ-measurable
sets. When the measure is also implict, we will simply say that these sets are
measurable.

Example 3.1.4
If X is any set and f : X → [0,∞] is any function, then the set function

µ(A) =
∑

x∈A f(x) (where if A is uncountable, and f is non-zero on uncountably
many elements of A, the sum is infinite) gives us a measure on P(X).

Two particular examples of this are of note. First if f(x) = 1 for all x ∈ X,
then µ(E) = c(E), the counting measure. Secondly, if there is some x0 ∈ X
with f = χ{x0}, then µ(A) = δx0(A), the unit point mass or Dirac measure.

The Dirac measure can alternatively be defined by

δx0(A) =

{
1 x0 ∈ A
0 x0 6∈ A.

3

Example 3.1.5
If (X,M, µ) is a measure space, and A ∈ M, then (A,MA, µ|MA

) is a
measure space, where

MA = {B ∩A : B ∈M}.

3

We use the names counting measure and Dirac measure for restrictions of
those measures to smaller σ-algebras as well.

Let (X,M, µ) be a measure space. A set A ∈ M is a ((µ-) null set if
µ(A) = 0. A is a σ-finite set if there is a countable collection of sets Ak ∈M,
k ∈ N, with µ(Ak) < ∞ and A =

⋃∞
k=1Ak. If we have µ(X) < ∞, we say
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3.1. General Measure Spaces 101

that (X,M, µ) is a finite measure space, and µ is a finite measure. If we
have µ(X) = 1, µ is often called a probability measure. If X is a σ-finite
set, we say that (X,M, µ) is a σ-finite measure space and µ is a σ-finite
measure. If for every A ∈ M with µ(A) = ∞, we can find a set B ⊆ A with
0 < µ(B) < ∞, we say that (X,M, µ) is a semifinite measure space and µ
is a semifinite measure.

As before, a property P holds (µ-) almost everywhere (or (µ-) a.e.) if it
is true for every x except on a null set. We will omit the µ if there is no risk of
confusion about the measure.

The facts we proved about measures on R also transfer without change to
their proofs:

Proposition 3.1.5
If A is an algebra of sets in X, and µ is an additive set function on A, then if
A and B ∈ A, and A ⊆ B,

µ(A) ≤ µ(B).

Proof:
See Proposition 1.3.1.

Proposition 3.1.6
If A is an algebra of sets in X, and µ is an additive set function on A, then if
A and B ∈ A, and µ(A ∩B) <∞,

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B).

Proof:
See Proposition 1.3.2.

Proposition 3.1.7
Let A be a σ-algebra of sets in X, and µ a σ-additive set function on A. If Ak,
k ∈ N, is a sequence of sets in A with Ak−1 ⊆ Ak, then

µ

( ∞⋃
k=1

Ak

)
= lim

k→∞
µ(Ak).

Proof:
See Proposition 1.3.3.

Proposition 3.1.8
If A is a σ-algebra of sets in X, µ is a measure on A, and Ak, k ∈ N, is a
sequence of sets in A with Ak ⊆ Ak−1, and µ(Ak) <∞ eventually, then

µ

( ∞⋂
k=1

Ak

)
= lim

k→∞
µ(Ak).

Proof:
See Exercise 1.3.3.
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Exercises

3.1.1. Prove 3.1.4.

3.1.2. Let C be the Cantor set, and let ϕ : [0, 1] → C be a bijection. Let N
be the unmeasurable set of Example 1.1.2. Show that ϕ(N) is a Lebesgue
measurable set, but is not a Borel set.

3.1.3. Show that (R,L,m) is σ-finite.

3.1.4. (†) Show that every σ-finite measure is semifinite.

3.1.5. (†) Let µ1, . . . , µn be measures on (X,M). Show that µ =
∑n

k=1 akµk,
where ak ≥ 0 is also a measure on (X,M).

3.1.6. (†) If µ is a semifinite measure, show that if µ(A) = ∞ then for any
M > 0 there is a subset B of F with M < µ(B) <∞.

3.2 Measurable Functions

Having transferred the basics of measure theory across to general sets, we need
to identify the functions that we can hope to integrate. We start at an abstract
level with the following definition:

Definition 3.2.1
Let (X,M) and (Y,N ) be measurable spaces, and let f : X → Y . We say that
f is (M,N )-measurable (or simply measurable if the σ-algebras are implicit),
if f−1(A) ∈M for all A ∈ N .

If A ∈M, we say that f is measurable on A if the restriction of f to A is
(MA,N )-measurable.

In other words, inverse images of measurable sets are measurable. In this
sense, this definition is very much in the spirit of the definition of continuity
that we discussed in the previous chapter.

It is immediate that if (X,M), (Y,N ) and (Z,O) are measurable spaces,
and f : X → Y is (M,N )-measurable and g : Y → Z is (N ,O)-measurable,
then f ◦ g is (M,O)-measurable, ie. compositions of measurable functions are
measurable.

As with our discussion of sub-bases and continuity, we can make our lives
easier when checking for measurability by only looking at a generating family
of sets.

Lemma 3.2.1
Let (X,M) and (Y,N ) be measurable spaces, and let N be generated by E .Note: this lemma is a very

generalised version of
Proposition 1.6.1.

Then f : X → Y is measurable if and only if f−1(E) ∈M for all E ∈ E .

Proof:
If f is measurable, the result follows immediately from the definition.
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3.2. Measurable Functions 103

The converse follows by observing that O = {A ⊆ Y : f−1(A) ∈ M} is a
σ-algebra, and that the hypothesis tells us that E ⊆ O. But that implies that
N ⊆ O, and so f−1(A) ∈ M for all A ∈ N , and we have that f is measurable.

An immediate corollary of this is the following fact.

Corollary 3.2.2
If (X, τX), (Y, τY ) are topological spaces, then every continuous function f :
X → Y is (BX ,BY )-measurable.

Proof:
The open sets of Y generate BY , and we know that f−1(U) ∈ τ ⊆ BX by

the definition of continuity, so the lemma gives the result immediately.

Our principle interest is with real- or complex- valued functions defined on
a set X. In these case, we always assume that the codomains R and C have the
Borel σ-algebras BR or BC respectively. If (X,M) is a measurable space, and
f : X → R or C, we say that f is M-measurable (or simply measurable if M
is implicit) if it is (M,BR)- or (M,BC)-measurable. If (X, τ) is a topological
space, we say that the BX -measurable functions are Borel measurable.

Example 3.2.1
If L are the Lebesgue measurable sets, then f : R → R is L-measurable if

and only if it is Lebesgue measurable in the sense discussed in Chapter 1.
Since BR ⊂ L, we have that every Borel measurable function is Lebesgue

measurable, but not every Lebesgue measurable function is Borel Measurable.
3

We would like to prove results analagous to those in Section 1.6, and some
of them are straightforward given the above facts.

Proposition 3.2.3
Let (X,M) be a measurable space, and let f and g be M-measurable real- (or
complex-) valued functions on X, and let h be a continuous real- (or complex-)
valued function on R (or C). Then:

(i) h ◦ f is M-measurable,

(ii) cf is M-measurable for every constant c,

(iii) |f | is M-measurable,

(iv) f+ is M-measurable,

(v) f− is M-measurable,

(vi) f + g is M-measurable,

(vii) fg is M-measurable.
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Proof:
All of these rely on Corollary 3.2.2. We will prove the real case, the complex

case is similar.
(i) This follows simply from the fact that because h is continuous, h is

(BR,BR)-measurable, and f is (M,BR)-measurable, and so the composition h◦f
must be (M,BR)-measurable, ie. it is M-measurable.

(ii) This is just the special case of (i) where h(x) = cx.
(iii) This is just the special case of (i) where h(x) = |x|.
(iv) This is just the special case of (i) where h(x) = max{x, 0}.
(v) This is just the special case of (i) where h(x) = max{−x, 0}.
(vi) The map ϕ : (x, y) 7→ x+ y is a continuous function from R2 to R and

hence is (BR2 ,BR)-measurable, and the map ψ : x 7→ (f(x), g(x)) is (M,BR2)-
measurable, since one can show that BR2 is generated by open rectangles

R = {(a, b)× (c, d) : a, b, c, d ∈ R},

and ψ−1((a, b) × (c, d)) = f−1((a, b)) ∩ f−1((c, d)) ∈ M. So f + g = ϕ ◦ ψ is
(M,BR)-measurable.

(vii) This is just like (vi), but using the fact that that ϕ : (x, y) 7→ xy is
continuous.

As simple corollaries, we have that f − g is M-measurable and 1/f is M-
measurable if f(x) 6= 0. Also, if f+ and f− are both M-measurable, then so is
f .

In the case of complex-valued functions, we have the following as well:

Corollary 3.2.4
If (X,M) is a measurable space, then f : X → C is M-measurable if and only
if Re f and Im f are M-measureable.

Also sign f defined by sign z = z/|z| (or 0 if z = 0) is M-measurable.

Proof:
We know that R : z 7→ Re z and I : z 7→ Im z are both continuous functions

from C to R, and so Re f = R ◦ f and Im f = I ◦ f are both M-measureable.
If Re f and Im f are M-measurable, then f = Re f+i Im f is M-measurable

by the previous result.
The function sign : z 7→ z/|z| is a BC-BC-measurable function. This can

be seen by the fact that it is continuous at every point except 0, and so if
U ⊆ C does not contain 0, then sign−1(U) is open in C, and hence Borel
measurable, and if U does contain 0 then U \ {0} is open, and {0} is closed,
and sign−1(U) = sign−1(U \ {0}) ∪ {0}, which is a union of an open set and a
closed set, and hence is Borel measurable.

It follows immediately from this fact and the fact that composition of mea-
surable functions between appropriate measureable spaces are measurable, that
sign f = sign ◦f is M-measurable.

As in the case of Lebesgue measurable functions, measurability behaves well
under limiting constructs:
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Theorem 3.2.5
Let (X,M) be a measurable space. If fk : X → R is a sequence M-measurable
functions, then

g1(x) = sup
k
fk(x) and g2(x) = inf

k
fk(x)

and
h1(x) = lim sup

k
fk(x) and h2(x) = lim inf

k
fk(x)

are all M-measurable functions on X. Moreover, if fk converges pointwise to
some function f : X → R, then f us M-measurable.

Proof:
The proof of these is exactly as in Theorem 1.6.3 and Corollaries 1.6.4 and

1.6.5, keeping in mind that Lemma 3.2.1 and Lemma 3.1.4 mean that we only
need check that the inverse images of certain intervals I to prove measurability.

Although sup, inf, lim sup and lim inf do not make sense for complex-valued
functions, limits do, and we can easily see that the limit of complex-valued
measurable functions is again a measurable functions by recalling that fn and f
are complex-valued functions then fn → f pointwise if and only if Re fn → Re f
and Im fn → Im f pointwise in R.

As before, we define a simple function on a set X to be a function of the
form

f(x) =
n∑

k=1

ckχEk

for some constants ck and sets Ek. A simple function is in standard form if
the values ck are points in the range, and Ek = f−1({ck}). A simple function
is M-measurable if and only if every Ek is measurable when the function is
written in standard form.

Note that although we often assume that the constants ck are real, or even
non-negative, they can be chosen to be complex numbers.

As before, the key fact about simple functions is that we can approximate
any measurable function by simple functions.

Theorem 3.2.6
Let (X,M) be a measurable space. Let f : X → R be M-measurable with
f ≥ 0. Then there is a sequence of M-measurable simple functions ϕn with
0 ≤ ϕn ≤ ϕn+1 ≤ f for all n, and ϕn → f pointwise on X.

Proof:
As you might expect, the proof is the same as the proof of Theorem 1.6.9

for Lebesgue measurable functions.

For simplicity, we will denote the set of non-negative M-measurable func-
tions on X by M+(X).
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Exercises

3.2.1. Verify that the proofs which refer to Chapter 1 are in fact valid.

3.2.2. (†) Show that the supremum of an uncountable family of measurable
functions may not be measurable.

3.2.3. Show that any monotone function f : R → R is Borel measurable.

3.3 General Lebesgue Integrals

Now that we have general measurable functions, it is easy to define the integral
in the general setting. This is done in exactly the same way as for the Lebesgue
integral on R: we start with simple functions, use these to define the integral
for non-negative measurable functions, and then proceed to general measurable
functions.

Definition 3.3.1
Let (X,M, µ) be a measure space. If ϕ ∈ M+(X) is simple, with standard
representation

ϕ =
n∑

k=1

ckχAk

then we define the Lebesgue integral of ϕ to be∫
ϕ dµ =

n∑
k=1

ckµ(Ak).

If f ∈M+(X), then we define the Lebesgue integral of f to be∫
f dµ = sup{

∫
ϕ dµ : ϕ ∈M+(X), simple, ϕ ≤ f}.

If f : X → R is any M-measurable function, and∫
f+ dµ <∞ and

∫
f− dµ <∞,

then we define the Lebesgue integral of f to be∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Note that we are taking the integral over the entire set X. If we want
to integrate over a measurable subset E ⊆ X, we simply note that ME =
{E∩A : A ∈M} is a σ-algebra on E, called the relative σ-algebra on E, and
(E,ME , µ|ME

) is a measure space, so we simply define∫
E

f dµ =
∫
f |E dµE =

∫
fχE dµ.
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For simplicity, we will work with integrals over the entire measure space in
general, and any result can be easily converted to a result about integrals over
a particular set with the above observations.

As before, the integral behaves as we expect:

Proposition 3.3.1
If (X,M, µ) is a measure space, ϕ and ψ ∈M+(X) are simple, and c ≥ 0, then

(i) if ϕ has a representation ϕ =
l∑

k=1

akχGk
, with ak ≥ 0, then

∫
ϕ dµ =

l∑
k=1

akm(Gk).

(ii)

∫
cϕ dµ = c

∫
ϕ dµ.

(iii)

∫
ϕ+ ψ dµ =

∫
ϕ dµ+

∫
ψ dµ.

(iv) if ϕ ≤ ψ, then

∫
ϕ dµ ≤

∫
ϕ dµ.

(v) µϕ(A) =
∫

A

ϕ dµ is a measure on M.

Proof:
This is the same as Proposition 1.7.1, except for the last part, which is

Proposition 1.7.3 in the simple function case.

The integral for M+(X) functions is similarly well-behaved, although we do
not yet have additivity:

Proposition 3.3.2
Let (X,M, µ) be any measurable set, f and g ∈ M+(X), and c ≥ 0 be any
constant. Then

(i)

∫
E

cf dµ = c

∫
E

f dµ.

(ii) if f ≤ g, then

∫
E

f dµ ≤
∫

E

g dµ.

(iii) µf (A) =
∫

A

f dµ is a measure on M.

(iv)

∫
f dµ = 0 iff f = 0 µ-almost everywhere.

April 26, 2006 Version 0.8



108 Measure Theory

(v) if f = g µ-almost everywhere, then

∫
f dµ =

∫
g dµ.

Proof:
(i) and (ii) are the same as Proposition 1.7.2. (iii) is the same as Propo-

sition 1.7.3, and (iv) and (v) are the same as two of the Corollaries of that
Proposition.

Since we know how the theory should progress, we may as well give the
Monotone Convergence Theorem at this point.

Theorem 3.3.3 (Monotone Convergence Theorem)
Let (X,M, µ) be a measure space, and let fn ∈M+ be an increasing sequence
which converges pointwise µ-almost everywhere to some function f : X → R.
Then f ∈M+(X), and ∫

f dµ = lim
n→∞

fn dµ.

Proof:
This is the same as Theorem 1.8.1 and the Corollary which allows us to relax

to pointwise almost everywhere convergence.

As was the case before, we use the Monotone Convergence Theorem to prove
additivity.

Theorem 3.3.4
Let (X,M, µ) be a measure space, and let fk a (finite or infinite) sequence of
functions in M+(X), and let

f =
∑

k

fk.

Then ∫
f dµ =

∑
k

∫
fk dµ.

Proof:
This is the same as Theorem 1.8.3.

Finally, we have Fatou’s Lemma:

Proposition 3.3.5 (Fatou’s Lemma)
If (X,M, µ) is a measure space, and fn is a sequence of functions in M+(X),
then ∫

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.

For real and complex valued measurable functions, we have the following
results. Note that if the integral of f is finite, we say that f ∈ L1(X,µ) (or just
L1(X) is µ is implicit).
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Lemma 3.3.6
Let (X,M, µ) be any measure space. Then the following are equivalent:

(i) f ∈ L1(X,µ).

(ii)

∫
|f | dµ <∞.

Proposition 3.3.7
Let (X,M, µ) be any measure space, and f , g be measurable functions for which
the integral exists, and let c be any constant. Then

(i)

∫
cf dµ = c

∫
f dµ.

(ii) if we do not have∫
f dµ = +∞ and

∫
g dµ = −∞

or vice versa, then ∫
f + g dµ =

∫
f dµ+

∫
g dµ

(iii) if f ≤ g, then

∫
f dµ ≤

∫
g dµ.

(iv) if F ⊆ E is measurable,

∫
E

fχF dµ =
∫

F

f dµ.

(v) if E is null, then

∫
E

f dµ = 0.

(vi) if f is bounded on X and µ(X) < ∞ (ie. (X,µ) is a finite measure
space), then f ∈ L1(X,µ). Moreover, if α ≤ f(x) ≤ β on X, then

αm(X) ≤
∫
f dµ ≤ βm(X).

Theorem 3.3.8 (Dominated Convergence Theorem)
Let (X,M, µ) be a measure space, and fn be a sequence of real- or complex-
valued measurable functions for which the Lebesgue integral exists on X, and let
fn → f pointwise µ-almost everywhere. If there is some function g ∈ L1(X,µ),
for which

|fn(x)| ≤ g(x),

for all x ∈ X, then ∫
f dµ = lim

n→∞

∫
fn dµ.
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Proposition 3.3.9
Let (X,M, µ) be a measure space. If fn ∈ L1(X,µ) and

∞∑
n=1

∫
|fn| dµ <∞,

then there is an f ∈ L1(X,µ), such that

f =
∞∑

n=1

fn

almost everywhere on X, and∫
f dµ =

∞∑
n=1

∫
fn dµ.

Having got this block of theory out of the way, we should have a look at
what these general integrals can look like in particular examples.

Example 3.3.1
Consider a measure space of the form (X,P(X), µα) as in Example 3.1.4

with a “weighting function” α. If ϕ is a non-negative simple function (which
means that it is non-zero at a finite number of points), then∫

ϕ dµα =
n∑

k=1

ck
∑

x∈Ek

α(x) =
∑
x∈X

α(x)ϕ(x).

By letting simple functions ϕn increase pointwise to an arbitrary function f on
X, we get that∫

f dµα = lim
n→∞

∫
ϕn dµα = lim

n→∞

∑
x∈X

α(x)ϕn(x) (3.1)

=
∑
x∈X

lim
n→∞

α(x)ϕn(x) =
∑
x∈X

α(x)f(x). (3.2)

(We can swap the sum and limit, because either the sums are absolutely con-
vergent, or are eventually +∞.)

In particular, counting measure (where α = 1) gives us a simple sum:∫
f dc =

∑
x∈X

f(x),

while the Dirac measure at x0 gives us evaluation:∫
f dδx0 = f(x0).

3

This last example shows that this general concept of integration is very
flexible: sums and even evaluation of a function can be considered a type of
integration.
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Exercises

3.3.1. Verify the claims made in this section.

3.3.2. (†) Use the counting measure on N to state Fatou’s Lemma and the
convergence theorems as theorems about sums of series.

3.4 Types of Convergence

When considering a sequence (fn) of R or C valued functions, we are already
familiar with different types of convergence. The most familiar of these are uni-
form convergence and pointwise convergence. With the introduction of measures
and integration, we have some new types of convergence to consider

In measure theory, null sets are usually negligible: it often suffices that some
condition hold except on a set of measure 0. As we have seen, the monotone and
dominated convergence theorems work when the functions converge pointwise
almost everywhere. It is easy to see that uniform convergence implies pointwise
convergence which in turn implies pointwise almost everywhere convergence.
Pointwise almost everywhere convergence is only equivalent to pointwise con-
vergence if the only null set is the empty set or, equivalently, all single point
sets {x} ⊆ X have positive measure.

For sequences of integrable functions we can naturally talk about a metric
coming from the integral. We say fn → f in L1 if we have convergence in the
pre-metric

d(f, g) =
∫
|f − g| dµ.

This type of convergence does not automatically bear any relation to the other
types of convergence. Examples can be found where there is uniform conver-
gence, but not L1 convergence, and vice-versa. If, however, the measure space
is finite, ie. µ(X) < ∞, then we have that uniform convergence implies L1

convergence.
We say that a sequence of measurable functions converges in measure if

for every ε > 0,
µ({x ∈ X : |fn(x)− f(x)| ≥ ε}) → 0

as n → ∞. We can easily see that if fn → f in L1 then fn → f in measure,
since if

En,ε = {x ∈ X : |fn(x)− f(x)| ≥ ε},

we have ∫
|fn − f | dµ ≥

∫
En,ε

|fn − f | dµ ≥ εµ(Enε),

and so µ(En,ε) → 0 as n→∞.
The final type of convergence we shall consider is called almost uniform con-

vergence. A sequence of measurable functions converges to f almost uniformly
if for every ε > 0, there is a set E ⊆ X such that µ(E) < ε and fn → f
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uniformly on Ec. Clearly, if fn → f uniformly, then fn → f almost uniformly.
In addition, it is not hard to see that if fn → f almost uniformly, then fn → f
almost everywhere, since the set of points where fn(x) does not converge to
f(x) is a subset of the intersection of all the sets E for all possible ε, and hence
has measure 0. One can also show that almost uniform convergence implies
convergence in measure.

Two slightly deeper theorems give us some partial results linking these types
of convergence together.

Proposition 3.4.1
Let (fn) be Cauchy in measure, ie. for every ε > 0, we have

µ({x ∈ X : |fn(x)− fm(x)| ≥ ε}) → 0

as m, n → ∞. Then there is a measurable function f such that fn → f in
measure, and a subsequence fnk

which converges pointwise a.e. Furthermore if
fn → g in measure, then f = g a.e.

Proof:
Choose a subsequence gk = fnk

so that the set Ek = {x ∈ X : |gk(x) −
gk+1(x)| ≥ 2−k} has µ(Ek) ≤ 2−k. Letting Fj =

⋃∞
k=j Ek, we have

µ(Fj) ≤
∞∑

j=k

2−k = 21−j ,

and for x /∈ Fj we have

|gk(x)− gl(x)| ≤
l∑

m=k

|gm+1(x)− gm(x)| ≤ 21−k

so gk is pointwise Cauchy for x /∈ Fj . Moreover, the set of points where gk is
not pointwise Cauchy is contained in the intersection F of the Fj , and

µ
(⋂

Fj

)
≤ 21−j

gk is Cauchy almost everywhere. Therefore there is a measurable f such that
gk → f on F c, and f(x) = 0 on F , i.e. gk → f pointwise almost everywhere.

Moreover, |gk(x)−f(x)| ≤ 22−k for k ≥ j and x /∈ Fj , so gk → f in measure,
since µ(Fj) → 0. But then fn → f in measure, since

{x ∈ X : |fn(x)− f(x)| ≥ ε} ⊆{x ∈ X : |fn(x)− gk(x)| ≥ ε/2}
∪ {x ∈ X : |gk(x)− f(x)| ≥ ε/2}

and both sets on the right have measure converging to 0 as n → ∞, so the
measure of the set on the left converges to 0.

A similar argument shows that if fn → g, then f = g a.e.

An immediate corollary of this is that if fn → f in L1, then there is a
subsequence fnk

which converges almost everywhere.
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Theorem 3.4.2 (Egoroff’s Theorem)
If µ(X) < ∞ and fn, f are measurable functions such that fn → f pointwise
a.e. Then fn → f almost uniformly.

Proof:
WLOG assume that fn → f pointwise. Then let

En(k) =
∞⋃

m=n

{x : |fm(x)− f(x)| ≥ k−1}

for n and k ∈ N. For fixed k, En(k) is a sequence of sets which decreases to ∅.
Hence µ(En(k)) → 0 as n→∞, since µ(X) <∞.

Now given ε > 0 and k ∈ N, let nk sufficiently large that µ(Enk
(k)) < ε2−k

and so E =
⋃
Enk

(k) has µ(E) < ε, and whenever n > nk, |fn − f(x)| < k−1

on Ec, so fn → f uniformly on Ec.

Example 3.4.1
The following sequences for Lebesgue measurable functions on R are useful

to illustrate the differences between the various types of convergence:

1. fn = n−1χ(0,n) converges to 0 uniformly, pointwise, pointwise a.e., almost
uniformly and in measure, but not in L1.

2. fn = χ(n,n+1) converges to 0 pointwise, pointwise a.e., but not uniformly,
in L1, in measure or almost uniformly.

3. fn = nχ[0,1/n] converges to 0 pointwise, pointwise a.e., almost uniformly
and in measure, but not uniformly, or in L1.

4. fn = ξ[j2−k,(j+1)2−k] for 0 ≤ j < 2k and n = j + 2k. This converges in
L1 and in measure, but not uniformly, pointwise, pointwise a.e. or almost
uniformly.

3

In addition to situations where each type of convergence is the natural one
to consider, there are also situations where we want one type of convergence,
but it simpler to show that a related type of convergence occurs.

We will learn of further ways in which sequences of functions converge when
we look at the Lp spaces (probably next semester).

Exercises

3.4.1. Verify the claims made in Example 3.4.1.
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3.5 Outer Measure

Up to this point we have been taking the measure as an already known and
understood quantity: given a measure space, we can replicate the theory of the
Lebesgue integral in the general setting. However, if you recall the theory from
Chapter 1, we had to construct the Lebesgue measure on R from a weaker object
defined on the algebra of elementary sets via the concept of an outer measure.
When set up appropriately, we can generalise this construction.

Definition 3.5.1
Let X be any set. An outer measure is a set-function µ∗ : P(X) → [0∞] such
that:

1. µ∗(∅) = 0;

2. if A ⊆ B, then µ∗(A) ≤ µ∗(B);

3. (subadditivity) if A =
⋃∞

k=1Ak, then

µ∗(A) ≤
∞∑

k=1

µ∗(Ak).

As before, given an outer measure µ∗ we say that a set E is measurable
with respect to µ∗ if for every set A we have

µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E).

Again, to show that a set is measurable it suffices to verify that

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A \ E),

since µ∗(A) ≤ µ∗(A∩E)+µ∗(A\E) follows immediately from the subadditivity
axiom.

As one would hope, these “measurable” sets do in fact form a σ-algebra.

Theorem 3.5.1 (Carathéodory)
Let µ∗ be an outer measure. Then the family M of µ∗-measurable sets is a
σ-algebra, and the restriction of µ∗ to M is a measure.

Proof:
As with so much of this section, the proof is exactly the same as the proof

given for the first version of Carathéodory’s theorem (Theorem 1.4.3).

The measure produced by Carathéodory’s theorem is always complete (that
is, if A ⊆ B and µ(B) = 0, then µ(A) = 0) for the same reasons as discussed in
Chapter 1 (see Exercises).

With this behind us, we can now talk about generalizing the way that
Lebesgue measure was defined. Recall that the definition started with the mea-
sure of an interval, and proceeded from those sets to elementary sets, and thence
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via Lebesgue outer measure and Carathèodory’s theorem to Lebesgue measur-
able sets.

However, the collection of all intervals is not an algebra of sets. In fact it
satisfies a weaker condition.

Definition 3.5.2
A collection S of subsets of a set X is called a semi-algebra if

1. ∅ ∈ S,

2. given A, B ∈ S, then A ∩B ∈ S,

3. if A ∈ S, then Ac is a finite disjoint union of elements of S.

It is not hard to prove that the collection of all finite unions of sets in a
semi-algebra gives the algebra generated by the semi-algebra (see Exercises).

The next step was to define a measure-like function on the set of all intervals.
The key property that this function had was that it was σ-additive wherever
this made sense.

Definition 3.5.3
Let S be a semi-algebra. A pre-measure is a set function µ : S → [0,∞] such
that

1. µ(∅) = 0,

2. if Ak ∈ S are disjoint, with

∞⋃
k=1

Ak ∈ S,

then

µ

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

µ(Ak).

In other words, although countable unions of elements of the semi-algebra
need not be contained in the algebra, we insist that in the cases where they are,
the pre-measure must be σ-additive for those sets.

Example 3.5.1
The set function m : I → [0,∞] of Chapter 1 is a pre-measure on the

semi-algebra of intervals sets. This is the content of Lemma 1.4.2.
Since every algebra is also a semi-algebra, the set function m : E → [0,∞]

which extends m to elementary functions is also a pre-measure. 3

Given a pre-measure µ on a semi-algebra S in a set X, we can define a set
function on P(X) by

µ∗(E) = inf{
∞∑

k=1

µ(Ak) : E ⊆
∞⋃

k=1

Ak, Ak ∈ S}.
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This is precisely analagous to the definition of the (Lebesgue) outer measure in
Chapter 1, and this set function is an outer measure for the same reason.

Proposition 3.5.2
Let µ : S → [0,∞] be a pre-measure on a semi-algebra of sets S in a set X.
Then the set function µ∗ is an outer measure with µ∗(A) = µ(A) for all A ∈ S,
and every set in the semi-algebra S is µ∗-measureable.

Proof:
These first of these claims is proved similarly to Proposition 1.4.1, but with

the elementary sets replaced by an arbitrary semi-algebra of sets.
The remaining parts are slightly more complex than the corresponding state-

ments in chapter 1, since we are dealing with a semi-algebra rather than the
algebra of elementary sets, but the basic approach is the same.

It is immediate from the definition of µ∗ that if A ∈ S, then µ∗(A) ≤ µ(A).
On the other hand, if A ⊆

⋃∞
k=1Ak with Ak ∈ S, then for each k we can find

disjoint sets Ak,j ∈ S such that Ac
k = A1 ∪ · · · ∪Ank

. We define B1 = A1 and

Bk,j1,j2,...,jk−1 = Ak ∩A1,j1 ∩ · · · ∩Ak−1,jk−1

where 1 ≤ jl ≤ nl. All such sets are elements of S, are pairwise disjoint, and
are chosen so that

An =
⋃

k,j1,j2,...,jk−1

Bk,j1,j2,...,jk−1

where the union is taken over k = 1, 2, . . . , n, and 1 ≤ jl ≤ nl. Clearly then,

A = A∩
∞⋃

n=1

An = A∩
⋃

k,j1,j2,...,jk−1

Bk,j1,j2,...,jk−1 =
⋃

k,j1,j2,...,jk−1

(A∩Bk,j1,j2,...,jk−1),

and hence by the σ-additivity of µ,

µ(A) =
∑

k,j1,j2,...,jk−1

µ(A∩Bk,j1,j2,...,jk−1) ≤
∑

k,j1,j2,...,jk−1

µ(Bk,j1,j2,...,jk−1) =
∞∑

n=1

µ(An).

Taking infima over all such unions of sets Ak, we have that

µ(A) ≤ µ∗(A).

Let E be an arbitrary set, and A ∈ S. Since S is a semi-algebra, there are
disjoint sets A1, . . . , An ∈ S such that Ac =

⋃n
k=1Ak. Now, any ε > 0 we have

that there is acollection of sets Bk ∈ S such that E ⊆
⋃∞

k=1Bk, and

∞∑
k=1

µ∗(Bk) ≤ µ∗(E) + ε.
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Therefore, noting that the sets Bk ∩Aj ∈ S are disjoint sets and that µ∗ = µ is
σ-additive on such sets

µ∗(E) + ε ≥
∞∑

k=1

µ∗(Bk)

=
∞∑

k=1

µ∗((Bk ∩A) ∪ (Bk ∩Ac))

=
∞∑

k=1

µ∗((Bk ∩A) ∪ (Bk ∩ (A1 ∪A2 ∪ · · · ∪An)))

=
∞∑

k=1

µ∗((Bk ∩A) ∪ (Bk ∩A1) ∪ (Bk ∩A2) ∪ · · · ∪ (Bk ∩An))

=
∞∑

k=1

(µ∗(Bk ∩A) + µ∗(Bk ∩A1) + µ∗(Bk ∩A2) + · · ·+ µ∗(Bk ∩An))

=
∞∑

k=1

µ∗(Bk ∩A) +
∞∑

k=1

µ∗(Bk ∩A1) +
∞∑

k=1

µ∗(Bk ∩A2) + · · ·+
∞∑

k=1

µ∗(Bk ∩An)

≥ µ∗

( ∞⋃
k=1

Bk ∩A

)
+ µ∗

( ∞⋃
k=1

Bk ∩A1

)
+ µ∗

( ∞⋃
k=1

Bk ∩A2

)
+ · · ·+ µ∗

( ∞⋃
k=1

Bk ∩An

)
≥ µ∗(E ∩A) + µ∗(E ∩A1) + µ∗(E ∩A2) + · · ·+ µ∗(E ∩An)
= µ∗(E ∩A) + µ∗(E ∩Ac).

Since this holds for any ε > 0, we conclude that µ∗(E) ≥ µ∗(E∩A)+µ∗(E∩Ac),
and hence that A is µ∗-measurable.

It is worthwhile noting that sometimes we do not want to consider the the
entire σ-algebra of measurable sets generated by Carathéodory’s theorem; in
particular the σ-algebra generated by the algebra A is a natural σ-algebra to
consider restricting the new measure to.

These ideas are crucial in the next section when we discuss product measures.

3.5.1. Prove that the measure produced by Carathéodory’s theorem is complete.

3.5.2. Prove that the set of intervals I in R is a semi-algebra (remembering that
(a, a) = ∅).

3.5.3. Show that the collection of all intervals of the forms (p, q], (−∞, q] and
(p,∞), where p, q ∈ Q, and p ≤ q; together with the empty set, are a
semi-algebra.

3.5.4. Let S be an arbitrary semi-algebra. Show that the collection of sets A
consisting of and all finite unions of elements of S is an algebra; indeed it
is the algebra generated by S.
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3.5.5. Let f : R → R be a monotone increasing, right-continuous function.
Show that mf defined by mf ((a, b]) = f(b)− f(a), mf ((−∞, b]) = f(b)−
limx→−∞ f(x), and mf ((a,∞)) = limx→∞f(x)− f(a) is a pre-measure.

We denote by mf the measure generated by mf via the construction de-
scribed in this section, restricted to BR. Show that if g : R → R is another
monotone increasing, right-continuous function such that mf = mg, then
f − g is constant.

3.5.6. Let µ be a measure on (R,BR) such that µ(E) < ∞ if E is a bounded
Borel set. Define

F (x) =


µ((0, x]) x > 0
0 x = 0
−µ((−x, 0]) x < 0.

Show that F is a monotone increasing, right-continuous function and that
µ = mF for all Borel sets (where mF is defined as in the previous exercise).

3.6 Product Measures

One of the reasons for discussing general measure theory was to simplify the dis-
cussion of Lebesgue measure on Rn. We could proceed by defining the measure
of “boxes” and replicating the construction of Lebesgue measure for R. Thanks
to the discussion of general outer measure above, and the fact that any reson-
able definition of “boxes” give a semi-algebra, this is in fact not too onerous to
do. However The ideas of constructing measures on product spaces are much
more general, so we will work in this more general context.

We start by defining products of measurable spaces in much the same way
that we define product topologies.

Definition 3.6.1
Let (Xα,Mα) be a collection of measurable spaces indexed by αinI. Then
we define the product σ-algebra on the product X of the sets Xα to be the
σ-algebra generated by

{π−1
α (Aα) : Aα ∈Mα, α ∈ I},

where πα : X → Xα are the coordinate functions πα(x) = xα.
We denote this σ-algebra by ⊗

α∈I

Mα

or M1 ⊗ · · · ⊗Mn for finite products.

It is worthwhile noting that the product σ-algebra is the smallest σ-algebra
such that all the coordinate functions πα are

(⊗
α∈I Mα,Mα

)
-measurable.
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If Eα generates Mα, then the product σ-algebra is generated by

{π−1
α (Eα) : Eα ∈ Eα, α ∈ I}.

This can be seen by first observing that whatever σ-algebra, O, is generated by
this collection of sets, it must be contained in the product σ-algebra, since it is
a smaller generating set. On the other hand, if we consider all sets of the form
π−1

α (A) in O where A ⊂ Xα, we observe that it is also a σ-algebra, and that
as a result, the collection of sets {A ⊂ Xα : π−1

α (A) ∈ O} is a σ-algebra on Xα

which contains all the sets in E Therefore it contains Mα, and so π−1
α (A) ∈ O

for every A ∈Mα. Therefore the product σ-algebra is contained in O.
Although this is useful in abstract proofs, this collection of sets fails to

even be a semi-algebra, in general. Therefore it is not that useful for defining
measures on the product σ-algebra.

Lemma 3.6.1
Let (Xα,Mα) for α ∈ I be a collection of measurable spaces, where each Mα is
generated by a semi-algebra Sα. Then the collection of sets S consisting of finite
intersections of sets of the form π−1

α (A) for A ∈ Sα, and α ∈ I is a semi-algebra
which generates the product σ-algebra.

Proof:
That these sets generate is a consequence of the prior discussion. We need

to prove that this collection of sets is a semi-algebra.
It is immediate that the empty set is in S, since ∅ = π−1

α (∅).
It is also immediate that intersections of sets in S are in S, since an inter-

section of two sets which are finite intersections of sets of the form π−1
α (A) for

A ∈ Sα is still a finite intersection of such sets.
Finally, if

A =
n⋂

k=1

π−1
αk

(Ak)

and Ac
k =

⋃mk

j=1Bk,j with Bk,j ∈ Sα, then

Ac =
n⋃

k=1

π−1
αk

mk⋃
j=1

Bk,j

 =
n⋃

k=1

mk⋃
j=1

π−1
αk

(Bk,j),

which is a finite union of elements of S, as required.

Example 3.6.1
This Lemma implies that BRn = BR ⊗ · ⊗ BR, since BR is generated by

the semi-algebra of intervals, and BRn is generated by the semi-algebra of n-
dimensional boxes, which is precisely all finite intersections of sets of the form
π−1

k (I) = R× R× · · · I ××× R.
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On the other hand, LRn 6= LR ⊗ · ⊗ LR, since if N is a non L-measurable
subset of R, then N ×0×· · ·×0 is LRn -measurable (since it is a subset of a box
with measure 0), but is not LR ⊗ · ⊗ LR-measurable, as we will see below. 3

We now wish to consider measures on product σ-algebras. The principal area
of interest will be finite products, since this avoids issues arising from infinite
products of measures of sets. And for clarity of exposition, we will consider the
simple case of a product of two measures, since we can inductively generate any
finite product from this case.

Let (X,M, µ) and (Y,N , ν) be measure spaces. Then the set S = {E × F :
E ∈ M, F ∈ N} is precisely the semi-algebra from the previous lemma given
by intersecting inverse images of sets from M and N . In fact, one can show
that it is an algebra.

We define a set function µ⊗ ν on this semi-algebra by letting

(µ⊗ ν)(E × F ) = µ(E)ν(F ).

Proposition 3.6.2
Let (X,M, µ) and (Y,N , ν) be measure spaces. Then the set function µ ⊗ ν
defined on the algebra {E × F : E ∈M, F ∈ N} is a pre-measure.

Proof:
If we have a set E×F which is itself a countable disjoint union of rectangles

Ek × Fk, then we observe that

χE×F (x, y) = χE(x)χF (y),

but also
χE×F (x, y) =

∑
χEk×Fk

(x, y) =
∑

χEk
(x)χFk

(y).

Holding y constant and integrating using the corollary of the monotone conver-
gence theorem for sums, we get

µ(E)χF (y) =
∫
χE(x)χF (y) dµ(x)

=
∑∫

χEk
(x)χFk

(y) dµ(x) =
∑

µ(Ek)χFk
(y).

Integrating again with the MCT, this time with respect to y, gives

µ(E)ν(F ) =
∑

µ(Ek)ν(Fk),

and hence that µ× ν is σ-additive on the semi-algebra.
The observation that µ× ν(∅) = 0 means that µ× ν is a premeasure.

Using the facts about pre-measures from the previous section, we can define
an measure from µ× ν, and the collection of (µ× ν)∗-measurable sets includes
all sets in the algebra, and therefore also contains all sets in M⊗N . We define
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µ× ν to be this outer measure restricted to M⊗N . We call this measure the
product measure of µ and ν.

Note that this means that the product measure will not be complete, in
general.

Recall that a measure space (X,M, µ) is σ-finite if there is a countable
cover of X by measurable sets Ek such that µ(Ek) <∞. If both (X,M, µ) and
(Y,N , ν) are σ-finite, then (M ×N,M⊗N , µ× ν) is σ-finite, since if Ei cover
X with µ(Ei) <∞ and Fj cover Y with ν(Fj) <∞, then Ei ×Fj cover X × Y
and have finite product measure.

It can be shown that if µ×ν is σ-finite, then it is the only measure on M⊗N
such that

µ× ν(E × F ) = µ(E)ν(F ).

Given a set E ⊆ X × Y and two points x ∈ X and y ∈ Y , we define the
x-section and the y-section to be, respectively,

E1,x = {y ∈ Y : (x, y) ∈ E} E2,y = {x ∈ X : (x, y) ∈ E}.

Similarly for a function on X × Y , we define

f1,x(y) = f2,y(x) = f(x, y)

to be the x-section and y-section of f .

Proposition 3.6.3
If E ∈M⊗N , then E1,x ∈ N and E2,y ∈M for all x and y.

If f is M⊗N -measurable, then f1,x(y) is N -measurable and f2,y(x) is M-
measurable.

Proof:
Consider the collection of sets

R = {E ⊆ X × Y |E1,x ∈ N and E2,y ∈M for all x ∈ X, y ∈ Y }.

Clearly all rectangles are in R. Furthermore, since(
n⋃

k=1

Ek

)
i,z

=
n⋃

k=1

(Ek)i,z and (Ec)i,z = (Ei,z)c

for i = 1, 2 and z ∈ X or Y (depending on the value of i), the set R is a
σ-algebra. Hence M⊗N ⊆ R.

The second part follows immediately from the fact that

(fi,z)−1(E) = (f−1(E))i,z

for i = 1, 2 and z ∈ X or Y , depending on the value of i.

Example 3.6.2
This proposition demonstrates that if N ⊆ R is not Lebsgue meaureable,
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then E = N × {0} is not LR ⊗ LR-measurable, since the y-section at y = 0 is
N , contradicting the conclusion of the proposition.

However, it is contained in R× {0}, and (m⊗m)∗(R× {0}) = 0 so E is an
(m⊗m)∗-measurable set. Therefore it is LR2-measurable. 3

The above example demonstrates that there are some definite trade-offs in-
volved in restricting to the product σ-algebra, and also the earlier claim that
the product measure will generally not be complete.

We need to obtain some way of finding the measure of sets which are not
rectangles. Before we can do this, however, we need a technical lemma which
gives an alternative characterisation of σ-algebras generated by algebras.

A monotone class C is a collection of subsets of a set X such that if
E1 ⊆ E2 ⊆ E3 ⊆ . . . is an increasing sequence of sets in C, then the union of the
En lies in C and if F1 ⊇ F2 ⊇ F3 ⊇ . . . is a decreasing sequence of sets in C, then
the intersection of the Fn also lies in C. Clearly all σ-algebras are monotone
classes, but the converse is false.

Given a collection of monotone classes, their intersection is again a monotone
class, so given a collection E of subsets of X, we define the monotone class
generated by E to be the intersection of all monotone classes containing E .

Lemma 3.6.4
If A is an algebra of sets in X, then the monotone class generated C by A, and
the σ-algebra M generated by A are identical.

Proof:
Firstly, since M is a monotone class containing A, we have C ⊆M.
Now for a set E ∈ C, let

C(E) = {F ∈ C|E \ F, F \ E and E ∩ F ∈ C}.

It is immediate by symmetry of the definition, that if F ∈ C(E), then E ∈ C(F ).
A little work shows that C(E) is a monotone class. For example, if Fn is an
increasing sequence of sets in C(E),

E \
(⋃

Fn

)
= E ∩

(⋃
Fn

)c

= E ∩
(⋂

F c
n

)
=
⋂

(E ∩ F c
n) =

⋂
(E \ Fn)

and E \Fn is a decreasing sequence of sets in C, so the intersection is also in C.
Similar arguments work for all the other cases which need to be checked.

If E ∈ A, then for any F ∈ A it is easy to see that E \ F , F \E and E ∩ F
are all elements of A, and hence C. Therefore C ⊆ C(E), since it is a monotone
class containing A. So for any F ∈ C, F ∈ C(E) and so E ∈ C(F ). So A ⊆ C(F )
for any F ∈ C, and therefore C ⊆ C(F ). Hence C(F ) = C.

Since X ∈ A, X ∈ C, and so for any F ∈ C, F c = X \ F ∈ C(F ) = C. Also,
if Ek is a sequence of sets in C, let Fn =

⋃n
k=1Ek. Fn is then an increasing

sequence of sets, and ⋂
Ek =

⋂
Fn,
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which is an element of C. Therefore C is a σ-algebra which contains A. Hence
M⊆ C.

Hence C = M.

Another way of thinking about this result is that it says that if E is a collec-
tion of sets and A is the algebra generated by E , then the σ-algebra generated
by E coincides with the monotone class generated by A. The power of monotone
classes come from the fact that, at least in finite measure spaces, increasing and
decreasing sequences of sets give us monotone increasing and decreasing fam-
ilies of characteristic functions, and the union and intersection of the families
correspond to the pointwise limit. The convergence theorems will then allow
us conclude that certain classes of measurable sets are monotone classes, as we
will see.

Theorem 3.6.5
If (X,M, µ) and (Y,N , ν) are σ-finite measure spaces, and E ∈ M⊗N , then
the functions

x 7→ ν(E1,x) and y 7→ µ(E2,y)

are measurable on X and Y respectively. Furthermore,

µ× ν(E) =
∫
ν(E1,x) dµ(x) =

∫
ν(E2,y) dν(y).

Proof:
First assume that µ and ν are finite measures. Let R be the collection of

sets E ⊆ X × Y such that

x 7→ ν(E1,x) and y 7→ µ(E2,y)

are measurable on X and Y respectively, and that

µ× ν(E) =
∫
ν(E1,x) dµ(x) =

∫
ν(E2,y) dν(y).

We wish to show that this collection must include M⊗N .
Clearly, all rectangles are in R, for if E = A×B, then

ν(E1,x) = χA(x)ν(B) and µ(E2,y) = µ(A)χB(y).

By additivity it follows that all finite disjoint unions of rectangles must also be
in R.

Now let En be a sequence of sets in R and let E =
⋃

nEn. Then the
functions

fn(y) = µ((En)2,y)

form an increasing sequence which converges pointwise to f(y) = µ(E2,y), and
so by the monotone convergence theorem, f(y) is measurable, and∫

µ(E2,y) dν(y) = lim
n→∞

∫
fn dν = lim

n→∞
µ× ν(En) = µ× ν(E).
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Similarly, ν(E1,x) is measurable and∫
µ(E1,x) dµ(x) = µ× ν(E).

Hence E ∈ R.
SoR is a monotone class containing the algebra of finite unions of rectangles.

Hence, by the technical lemma above, M⊗N ⊆ R.
For the σ-finite case, we can write X × Y as the union of an increasing

sequence of rectangles Xj × Yj of finite measure. Given E ∈ M⊗N , We can
apply the result for finite measures to E ∩Xj × Yj , to get

µ×ν(E∩Xj×Yj) =
∫
χXj (x)ν(E1,x∩Yj) dµ(x) =

∫
χYj (y)ν(E2,y∩Xj) dν(y).

Applying the monotone convergence theorem is then sufficient to give the general
result.

Now that we have a good grasp on the nature of the product measure, at least
in the σ-finite case, we can now proceed to calculate the integral of functions on
the product space. As with the Riemann integral, it is most useful to be able to
calculate the integral with respect to the product measure in terms of a double
integral, and the following result tells us that this is OK.

Theorem 3.6.6 (Fubini-Tonelli)
Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces.

(Tonelli) If f ∈M+(X × Y ) then g(x) =
∫
f1,x dν and h(y) =

∫
f2,y dµ are

in M+(X) and M+(Y ) respectively, and∫
f d(µ× ν) =

∫ (∫
f(x, y) dν(y)

)
dµ(x) =

∫ (∫
f(x, y) dµ(x)

)
dν(y).

(Fubini) If f ∈ L1(µ × ν) then f1,x ∈ L1(ν) for almost every x and f2,y ∈
L1(µ) for almost every y, and the functions g(x) =

∫
f1,x dν and h(y) =∫

f2,y dµ, which are defined almost everywhere, are in L1(µ) and L1(ν) re-
spectively. Moreover,∫

f d(µ× ν) =
∫ (∫

f(x, y) dν(y)
)
dµ(x) =

∫ (∫
f(x, y) dµ(x)

)
dν(y).

We will normally drop the parentheses in the double integral.
Proof:

Tonelli’s theorem is clearly true for characteristic functions by Theorem 3.6.5.
By the linearity of the integral, it immediately extends to non-negative simple
functions.

For general f ∈ L+(X×Y ), we can always find a sequence of simple functions
ϕn which increase pointwise to f . For x ∈ X and y ∈ Y , the section functions
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(ϕn)1,x and (ϕn)2,y are increasing sequences of simple functions which converge
pointwise to f1,x and f2,y respectively. Hence if

gn(x) =
∫

(ϕn)1,x dν and hn(x) =
∫

(ϕn)2,y dµ

the monotone convergence theorem tells us that gn converges to g pointwise,
and hn converges to h pointwise. Moreover, we know that each gn and hn is
measurable, so g and h must be measurable. Furthermore, the sequences gn and
hn are themselves monotone increasing, so applying the monotone convergence
theorem again, gives∫

g dµ = lim
∫
gn dµ = lim

∫
ϕn d(µ× ν) =

∫
f d(µ× ν)

and similarly for h and hn, whence Tonelli’s result.
Moreover, if

∫
f d(µ × ν) < ∞, we must have g < ∞ and h < ∞ almost

everywhere. This implies that if f ∈ L1, then f1,x ∈ L1 for almost every x and
f2,y ∈ L1 for almost every y. Fubini’s result then follows by applying Tonelli’s
theorem to the positive and negative parts of the real and imaginary parts of
f .

A common situation in which we want to use these theorems is when we
want to swap the order of integration in a double integral, ie. to turn∫ ∫

f dµ dν into
∫ ∫

f dν dµ.

The typical strategy is to first show that f ∈ L1 using Tonelli’s theorem, ie.
that ∫

|f | d(µ× ν) =
∫ ∫

|f | dµ dν <∞,

and then use Fubini’s theorem to swap the integral. We can only swap the
integral once we know that f is in L1.

Example 3.6.3
The convolution of two functions plays an important role in the theory of

the Fourier transform. We define the convolution of f and g to be

(f ∗ g)(x) =
∫
f(x− y)g(y) dm(y)

If f , g ∈ L1 we can conclude that f ∗ g ∈ L1 from the Fubini-Tonelli theorem.
First, we note that |f(x− y)g(y)| is measurable as a function of x and y, since
the products and compositions of measurable functions are measurable, and
(x, y) 7→ x− y is continuous and thus measurable. Therefore Tonelli’s theorem
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applies and so

∫
|f ∗ g| dm =

∫ ∣∣∣∣∫ f(x− y)g(y) dm(y)
∣∣∣∣ dm(x)

≤
∫ ∫

|f(x− y)g(y)| dm(y) dm(x)

=
∫ ∫

|f(x− y)||g(y)| dm(x) dm(y) (Tonelli)

=
∫
|g(y)|

∫
|f(x− y)| dm(x) dm(y)

=
∫
|g(y)|

∫
|f(x)| dm(x) dm(y)

=
∫
|f(x)| dm(x)

∫
|g(y)| dm(y) <∞

An example of the use of Fubini’s theorem can be seen in showing that
convolution is an associative operation, ie. (f ∗ g) ∗ h = f ∗ (g ∗ h) almost
everywhere for f , g and h ∈ L1. We note that

((f ∗ g) ∗ h)(x) =
∫ ∫

f((x− z)− y)g(y) dm(y)h(z) dm(z)

=
∫ ∫

f(x− z − y)g(y)h(z) dm(y) dm(z)

(f ∗ (g ∗ h))(x) =
∫
f(x− y)

∫
g(y − z)h(z) dm(z) dm(y)

=
∫ ∫

f(x− y)g(y − z)h(z) dm(z) dm(y).

Now since f , g and h are measurable, then for fixed x so is |f(x−y)g(y−z)h(z)|,
regarded as a function from R × R → R with y and z the variables. Tonelli’s
theorem then tells us that∫
|f(x− y)g(y − z)h(z)| d(m×m)(y, z)

=
∫ ∫

|f(x− y)g(y − z)h(z)| dm(z) dm(y) (Tonelli)

=
∫ ∫

|f(x− y)||g(y − z)||h(z)| dm(z) dm(y)

= (|f | ∗ (|g| ∗ |h|))(x)

which is finite for almost every x, since |f | ∗ (|g| ∗ |h|) is an L1 function by the
prior discussion. Hence we have that f(x − y)g(y − z)h(z) is in L1(R × R) for
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almost every x, and hence Fubini’s theorem applies. So

(f ∗ (g ∗ h))(x) =
∫ ∫

f(x− y)g(y − z)h(z) dm(z) dm(y)

=
∫ ∫

f(x− y)g(y − z)h(z) dm(y) dm(z) (Fubini)

=
∫ ∫

f(x− (y + z))g(y)h(z) dm(y) dm(z) (translation invariance)

=
∫ ∫

f(x− z − y)g(y)h(z) dm(y) dm(z)

= ((f ∗ g) ∗ h)(x)

for almost every x. 3

Example 3.6.4
The above is a particular example of a general situation involving what are

known as integral kernels. Let K(x, y) be M⊗N -measurable on X×Y (assume
everything is σ-finite). If there is a constant C with∫

|K(x, y)| dµ(x) < C

for almost every y ∈ Y , and f ∈ L1(ν), then the function

g(x) =
∫
K(x, y)f(y) dν(y)

is in L1 and ∫
|g| dµ ≤ C

∫
|f | dν.

3

Exercises

3.6.1. Let (X,M, µ) be a σ-finite measure space, and let f ∈ L+(X). Then let

Gf = {(x, y) ∈ X × [0,∞] : 0 ≤ y ≤ f(x)}.

This set can be theought of as the region underneath the graph of f .
Show that Gf is M⊗BR∗ -measurable and that

µ×m(Gf ) =
∫
f dµ.

Hint 1: the map ϕ(x, y) = (f(x), y) is (M⊗BR,BR2)-measurable, ψ(z, y) =
z − y is continuous, and show Gf = (ψ ◦ ϕ)−1([0,∞)).
Hint 2: use Tonelli’s theorem on χGf

.
Note: This example shows that the integral of f is the area under the
graph in the most general sense.
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3.6.2. (†) Use Tonelli’s theorem to verify the claims of Example 3.6.4.

3.7 Signed and Complex Measures

Both in applications and in later theory, we want to be able to generalise the
notion of a measure to allow a set to have negative or complex measure. We
can do this, but we must be a little more cautious with infinities, just as we had
to when moving from nonnegative measurable functions to real- and complex-
valued functions.

Let (X,M) be a measurable space. A signed measure on (X,M) is aConcept: Intuitively, it may
help to visualise signed measures
using electrical charge. The net
charge in a region of space gives
a signed measure: sometimes it is
positive, sometimes it is negative,
and occasionally the positive and
negative charges in a region
balance out and give a net charge
of 0.

function ν : M→ [−∞,∞] such that

1. ν(∅) = 0,

2. If Ek is a sequence of disjoint sets in M, then

ν

(⋃
k

Ek

)
=
∑

k

ν(Ek)

and if the measure on the left is finite, the sum converges absolutely,

3. ν assumes at most one of the values ±∞.

These conditions hold for measures, as defined before, so every measure is a
signed measure. To prevent confusion, we will sometimes refer to measures as
positive measures.

If ν is a signed measure, we will say that a set E ∈M is positive, negativeTerminology: note that
“positive,” and “negative” are
defined to allow 0 as a possible
value, so null sets are also
positive and negative. This
definition is made largely to
avoid having to say
“non-negative sets” and
“non-positive sets” frequently.

or null if given any measurable set F ⊆ E, respectively, ν(F ) ≥ 0, ≤ 0 or = 0. If
µ(E) 6= ±∞ for all measurable sets E, then we say µ is a finite signed measure.

A complex measure on (X,M) is a function ν : M→ C such that

1. ν(∅) = 0,

2. If Ek is a sequence of disjoint sets in M, then

ν

(⋃
k

Ek

)
=
∑

k

ν(Ek)

and the sum converges absolutely.

We do not allow complex measures to take on infinite values. Again it is easy
to see that finite measures, and signed measures which are not infinite on any
set, are complex measures. Given a complex measure ν, we can immediately
define signed measures from the real and imaginary parts of ν, ie.

νr(E) = Re ν(E) and νi(E) = Im ν(E).

We call these the real and imaginary parts of ν, and clearly

ν(E) = νr(E) + iνi(E).
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Just as with any function whose domain is C, we can write this more simply as
ν = νr + iνi.

Example 3.7.1
If µ is a positive measure and f : X → R is an L1 function, then

ν(E) =
∫

E

f dµ

is a finite signed measure. Similarly, if f : X → C is in L1, then

ν(E) =
∫

E

f dµ

is a complex measure. 3

Example 3.7.2
It is easy to construct signed and complex measures from positive measures.

If µ1 and µ2 are two positive measures, at least one of which is a finite measure,
then ν = µ1−µ2 is a signed measure. If, on the other hand, ν1 and ν2 are finite
signed measures, ν = ν1 + iν2 is a complex measure. 3

It turns out that these constructions are generic: every signed and complex
measure can be represented in this way.

Proposition 3.7.1
Let ν be a signed or complex measure on (X,M). If Ek is an increasing sequence
of measurable sets with ν(Ek) > −∞ eventually if ν is a signed measure, then
ν(
⋃
Ek) = lim ν(Ek).

On the other hand, if Ek is a decreasing sequence of measurable sets with
ν(Ek) <∞ eventually if ν is a signed measure, then ν(

⋂
Ek) = lim ν(Ek).

The proof of this proposition is essentially the same as the proof of the
corresponding fact for measures.

Corollary 3.7.2
If ν is a signed measure and Pk are positive sets for all k, then

⋃
k Pk is a positive

set.

Proof:
Let Qn = Pn \

⋃n−1
k=1 Pk. Then Qn ⊆ Pn, so Qn is positive. Then given any

E ⊆
⋃
Pk, we have E =

⋃
(E ∩ Qk) and this is a disjoint union, so ν(E) =∑

ν(E ∩Qk) ≥ 0.

We can now show that a signed measure has distinct “regions” where it is
positive and negative.
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Theorem 3.7.3 (Hahn Decomposition Theorem)
If ν is a signed measure on (X,M) then X can be split into disjoint positive
and negative sets P and N . Furthermore, if P ′ and N ′ are another such pair,
then P∆P ′ (which equals N∆N ′) is null.

Proof:
Without loss of generality, assume that ν(A) 6= +∞ for any A ∈ M; other-

wise use −ν instead and reverse the P and N that are obtained.
The first step is to observe that we can always find an “almost positive”

subset of any set: given any measurable set A with ν(A) > −∞, and any ε > 0,
we can find a set B ⊆ A such that ν(B) ≥ ν(A) and µ(E) > −ε for all E ⊆ B.
If this is not true, we can let A1 = A, and find, inductively, En ⊂ An ⊆ A such
that ν(En) ≤ −ε and An−1 = An\En. This follows from the simple observation
that ν(An−1) ≥ ν(An) − ν(En) > ν(An) + ε ≥ ν(An). Now the sets En are
disjoint, so if E =

⋃
En, ν(E) = −∞ and so, ν(A \ E) = ν(A) − ν(E) = ∞,

contradicting our initial assumption.
We now refine this result to produce a positive subset: given any measurable

set A with ν(A) > −∞, there is a positive set P ⊆ A with ν(P ) ≥ ν(A).
Letting A1 = A, we again proceed inductively. Given A1, . . . , An−1, we can find
An ⊂ An−1 such that ν(An) ≥ ν(An−1) and ν(E) > −1/n for all E ⊆ An.
Letting P =

⋂
An, we have that ν(P ) = limn→∞ ν(An) ≥ ν(A), and any subset

E of P is contained in An for all n, so ν(E) > −1/n for all n, and hence
ν(E) ≥ 0.

Now let m = sup{ν(A) : A ∈ M}. Since ν(∅) = 0, m ≥ 0 and so we
can find An ∈ M with ν(An) → m. Letting Pn ⊆ An, with Pn positive
and ν(Pn) ≥ ν(An), we now have a sequence of positive sets whose measures
converge to m by the sandwich theorem. Letting P =

⋃
Pn, we have that P is

positive and ν(P ) = lim ν(Pn) = m.
Now letting N = P c, we observe that N is a negative set, since if E ⊆ N

with ν(E) > 0, ν(P ∪ E) = ν(P ) + ν(E) > m which is a contradiction. This
gives the result.

Given any other such pair, we simply observe that P \P ′ ⊆ P and P \P ′ ⊆
N ′, so P \ P ′ is both positive and negative, and hence must be null. Similarly
P ′ \ P is null, so P∆P ′ = (P \ P ′) ∪ (P ′ \ P ) is also null.

Such a decomposition into sets P and N is called a Hahn decomposition
for the measure ν.

Example 3.7.3
Let µ be a positive measure on (X,M), f ∈ L1(µ) and ν(E) =

∫
E
f dµ as

in Example 3.7.1. Then if we let P = {x ∈ X : f(x) ≥ 0} and N = {x ∈ X :
f(x) ≤ 0} then we have that X = P ∪ N and P ∩ N = ∅, and moreover if
E ∈ M with E ⊆ P , then f ≥ 0 on E and so ν(E) =

∫
E
f dµ ≥ 0. Similarly if

E ⊆ N we have that ν(E) ≤ 0.
Hence this P and N are a Hahn decomposition for ν. 3
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We say ν ≥ µ on a set A if ν(E) ≥ µ(E) for all E ⊆ A, or equivalently, if A
is a positive set for the measure ν − µ.

Definition 3.7.1
If µ and ν are two positive measures on (X,M), we say that µ and ν are
mutually singular, and write µ ⊥ ν, if there are sets E and F ∈M which are
disjoint, with E ∪ F = X, and for which µ(E) = 0 and ν(F ) = 0.

More generally, if µ and ν are signed or complex measures, then we insist
that E be µ-null and F be ν-null.

Sometimes we will say that ν is singular with respect to µ or vice-versa when
µ ⊥ ν. Informally we think of mutual singularity as saying that µ and ν are
supported on disjoint sets.

Example 3.7.4
The Lebesgue measure m and the Dirac point mass δx0 on (R,L) are mutu-

ally singular, with A = R \ {x0} and B = {x0}. 3

Example 3.7.5
Let µ be a positive measure on (X,M), f , g ∈ L1(µ) with ν(E) =

∫
E
f dµ,

and ρ(E) =
∫

E
g dµ as in Example 3.7.1.

If f and g have the property that for all x ∈ X either f(x) = 0 or g(x) = 0
(or both), then if we let E = {x ∈ X : f(x) 6= 0} and F = X \ E = {x ∈ X :
f(x) = 0}, then g = 0 on E, and so ρ(E) = 0 and f = 0 on F so that ν(F ) = 0.
So in this case we have ν ⊥ ρ. 3

Lemma 3.7.4
If µ and ν are finite measures on (X,M), then either µ ⊥ ν or there is some
E ∈M and ε > 0, such that µ(E) > 0 and ν ≥ εν on E.

Proof:
Consider the measures ν − n−1µ. These have Hahn decompositions Pn and

Nn, and let P =
⋃
Pn and N =

⋂
Nn = P c. Then N is negative for all the

measures ν − n−1µ, and so 0 ≤ ν(N) ≤ n−1µ(N) for all n. Hence ν(N) = 0. If
µ(P ) = 0, then µ ⊥ ν, as N and P are the sets required by the definition. On
the other hand, if µ(P ) > 0 then µ(Pn) > 0 for some n and Pn is a positive set
for ν − n−1µ, ie. ν ≥ n−1µ on Pn.

The Hahn decomposition together with the concept of mutual signualrity
allow us to decompose a signed measure into positive and negative parts.

Theorem 3.7.5 (Jordan Decomposition)
If ν is a signed measure, there are unique positive measures ν+ and ν− such
that ν = ν+ − ν− and ν+ ⊥ ν−.
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Proof:
Let X = P ∪N be a Hahn decomposition for ν, and define

ν+(A) = ν(A ∩ P ) ν− = −ν(B ∩N).

Then ν(A) = ν+(A)− ν−(A), and P and N are sets which show that ν+ ⊥ ν−.
If µ+ and µ− are two other measures satisfying the conculsion, let E and F

be disjoint sets so that µ+ is null on E and µ− is null on F , and E ∪ F = X.
Then E and F are a Hahn decomposition for ν, so P∆N is ν-null and so

µ+(A) = µ+(A ∩ E) = ν(A ∩ E) = ν(A ∩ P ) = ν+(A),

and similarly for µ− and ν−.

The measures ν+ and ν− are the positive and negative variations (or parts)
of ν, ν = ν+ − ν− is called the Jordan decomposition of ν, and we define the
total variation of ν to be

|ν| = ν+ + ν−.

Note that |ν|(E) 6= |ν(E)| in general.

Example 3.7.6
Let µ be a positive measure on (X,M), f ∈ L1(µ) and ν(E) =

∫
E
f dµ as

in Example 3.7.1.
Then if we let ν1(E) =

∫
E
f+ dµ, and ν2(E) =

∫
E
f− dµ, it is immediate that∫

E
f dµ =

∫
E
f+ dµ−

∫
E
f− dµ, so that ν(E) = ν1(E)− ν2(E). But moreover

for every x ∈ X we have that f+(x) = 0 or f−(x) = 0, since f cannot be both
positive and negative at the same time, we have ν1 ⊥ ν2 by Example 3.7.5.

So by the uniqueness of the Jordan decomposition, ν1 = ν+ and ν2 = ν−.
The total variation is then

|ν|(E) = ν+(E) + ν−(E) =
∫

E

f+ + f− dµ =
∫
|f | dµ.

3

We can easily see that A is ν-null iff |ν|(A) = 0, and ν ⊥ µ iff |ν| ⊥ µ iff
ν+ ⊥ µ and ν− ⊥ µ. Also ν is finite (ie. ν(A) 6= ±∞ for any A) iff |ν| is finite
iff ν+ and ν− ar finite.

Finally, the Jordan decomposition gives us an easy definition of integration
with respect to a signed measure. We simply let∫

f dν =
∫
f dν+ −

∫
f dν−,

where f is in L1(ν+) ∩ L1(ν−) = L1(ν).
Similarly for a complex measure, we define∫

f dν =
∫
f dνr + i

∫
f dνi

where νr and νi are the real and imaginary parts of ν.
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3.7.1. (†) In this chapter we used the fact that if µ and ν are positive measures
on (X,M) then so is the set function ρ = µ + ν defined in the obvious
way by ρ(E) = µ(E) + ν(E).

Verify that ρ is in fact a measure.

3.7.2. (†) Show that if µ is a signed measure on X, then µ(X) 6= ±∞ if and
only if µ is a finite signed measure.

3.7.3. (†) Show that if ν is a signed measure on (X,M) and µ1 and µ2 are
positive measures on the same space such that ν = ν1 − ν2, then ν1 ≥ ν+
and ν2 ≥ ν−.

3.8 The Radon-Nikodym Derivative

In classical calculus it is common to use substitution to change the variable of
integration. For the Riemann integral this is typically stated something like∫ b

a

f(u(x))u′(x) dx =
∫ u(b)

u(a)

f(x) dx,

and is a consequence of the chain rule and the Fundamental Theorem of Cal-
culus. Informally it is common to say “du = u′dx” in this situation, and it is
the purpose of this section to try to generalize this sort of situation to measure
theory.

Consider a differentiable function u on reals with u′ ≥ 0. Then we can
define a measure using u by letting µ(I) = u(b)− u(a) on the pre-algebra of all
intervals, and extending using outer measure to define a measure on Lebesgue
measurable sets. Then we have

µ([a, b]) =
∫

[u(a),u(b)]

dµ =
∫

[a,b]

u′ dm = mu′([a, b]).

So we conclude that µ = mu′ , but furthermore, if E is measurable,∫
χE dµ = µ(E) = mu′(E) =

∫
χEu

′ dm,

from whence we get, via measurable simple functions and the monotone conver-
gence theorem, that if f is a µ-integrable function, then∫

f dµ =
∫
fu′ dm.

In this situation it would seem very natural to write dµ = u′ dm, or dµ
dm =

u′. This is the prototypical example of what we will call a Radon-Nikodym
derivative, but we can generalize this situation much further.

We cannot generalize this completely, however, since one can show that there Note: If u were to exist in this
example, then u′ would be the
mythical “Dirac delta function”
which has value 0 for x 6= 0 and
has area 1 under the graph at 0.
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is no differentiable function u such that∫
f dδ0 =

∫
fu′ dm

where δ0 is the Dirac unit point mass measure at 0. The obstacle, as it turns
out, is that δ0 and m disagree about which sets are null.

Definition 3.8.1
Let (X,M) be a measurable space, and let µ and ν be measures on the space.

We say that ν is absolutely continuous with respect to µ, and write ν � µ,
if for every E ∈M such that µ(E) = 0, we have ν(E) = 0.

The term “absolutely continuous” is derived from classical real analysis, and
the connection can be seen via an ε-δ formulation of the concept.

Proposition 3.8.1
Let ν and µ be measures on (X,M). Then ν � µ iff for every ε > 0 there exists
a δ > 0 such that ν(E) < ε whenever µ(E) < δ.

Proof:
Assume that for every ε > 0 there exists a δ > 0 such that ν(E) < ε whenever

µ(E) < δ. Then if µ(E) = 0, we have that for any ε > 0, µ(E) < δ = 1 and
hence ν(E) < ε. Hence ν(E) = 0, and so ν � µ.

Conversely, if there exists a ε > 0 such that for every n ∈ N, we can find
En ∈ M with µ(En) < 2−n and ν(En) ≥ ε, then if Fn =

⋃∞
k=nEk and F =⋂∞

n=1 Fn, then µ(Fn) ≤
∑∞

k=n µ(Ek) ≤ 21−n and so µ(F ) = limn→∞ µ(Fn) = 0,
but ν(Fn) ≥ ε, so ν(F ) ≥ ε. Hence ν is not absolutely continuous with respect
to µ.

Mutual singularity and absolute continuity are almost completely exclusive
defintions. As Exercise 3.8.1 shows, if ν � µ and ν ⊥ µ, then ν(E) = 0 for
every measurable set E.

Example 3.8.1
Let (X,M, µ) be a measure space and f ∈ L+(X). Then

µf (E) =
∫

E

f dµ,

so if µ(E) = 0, then µf (E) = 0. Hence µf � µ. 3

As in the above example, when we have two measures µ and ν with the
relationship that ν(E) =

∫
E
dν =

∫
E
f dµ it is common to abuse notation and

express this relationship by saying that dν = f dµ, or even refer to the measure
as “f dµ.”

This situation is in fact typical of the case where ν is absolutely continuous
with respect to µ. In fact we can say more: any σ-finite measure ν can be broken
up into two parts, one part of the form f dµ which is absolutely continuous to
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µ, and a second part which is mutually singular. This decomposition is unique
up to modification of f on µ-null sets. This result is known as the Lebesgue-
Radon-Nikodym theorem.

As is often the case, we must first prove this for finite measures, and then
extend to σ-finite measures.

Theorem 3.8.2 (Lebesgue-Radon-Nikodym)
Let ν and µ be finite measures on (X,M). Then there exist unique positive
measures λ and ρ on (X,M) such that λ ⊥ ρ, ρ� µ and ν = λ+ρ. Furthermore,
there is a µ-integrable function f : X → [0,∞], unique up to modifications on
a µ-null set, such that dρ = f dµ.

Proof:
Consider the collection of functions Strategy: The aim of this proof

is to first find a candidate for f
and then use that to construct λ.
To find f we look at all the
functions which have the
property that g dµ ≤ dν and use
pointwise limits and the MCT to
find a candidate for f .

F =
{
g : X → [0,∞] :

∫
E

g dµ ≤ ν(E) for all E ∈M
}
.

If g1 and g2 ∈ F , then h = max(g1, g2) ∈ F , since if A = {x : g1(x) > g2(x)} is
the set of points where g1 > g2, then for any E ∈M,∫

E

h dµ =
∫

E∩A

g1 dµ+
∫

E\A
g2 dµ ≤ ν(E ∩A) + ν(E \A) = ν(E).

Induction then tells us that h = max(g1, . . . , gn) ∈ F if g1, . . . , gn ∈ F .
Let

c = sup
{∫

X

g dµ : g ∈ F
}
.

Clearly c ≤ ν(X) < ∞, so we can find a sequence of functions gn ∈ F whose
integrals increase to c. Moreover, if fn = max(g1, . . . , gn), then fn ∈ F , the
integrals of fn increase to c, and each fn(x) is an increasing sequence, so fn

converges pointwise some measurable function f : X → [0,∞]. The monotone Note: because it is possible that
fn(x) →∞ for some points x, we
have to allow f to take infty as
a value. To integrate such a
potentially infinite function,
remember that our convention
states that 0 · ∞ = 0, so the
integral of f is infinite if f is
infinite on a set of positive
measure, and is only finite if it is
finite almost everywhere.

convergence theorem then tells us that∫
E

f dµ = lim
n→∞

∫
E

fn dµ ≤ ν(E),

so f ∈ F , and moreover

c = lim
n→∞

∫
fn dµ =

∫
f dµ.

As a consequence of the fact that f has finite integral, we have that f(x) <∞
µ-almost everywhere.

Let ρ(E) =
∫

E
f dµ, and consider the measure λ defined by λ(E) = ν(E)−

ρ(E). Since f ∈ F implies
∫

E
f dµ ≤ ν(E), so 0 ≤ λ(E) <∞ for all E ∈M, so

λ is a finite measure.
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Additionally λ and µ are mutually singular, since otherwise by Lemma 3.7.4
we can find some A ∈ M and ε > 0 such that µ(A) > 0 and λ(E) ≥ εµ(E) for
any E ∈M with E ⊆ A. But then we have∫

E

f + εχA dµ = ρ(E) + εµ(E ∩A) ≤ ρ(E) + λ(E) = ν(E),

so f + εχA ∈ F , but ∫
X

f + εχA dµ = c+ εµ(A) > c

contradicting our construction of f .
If we have ν = λ′+f ′ dµ also satisfying the theorem, then λ−λ′ = (f−f ′) dµ,

but λ−λ′ ⊥ µ, and (f − f ′) dµ� µ, so λ−λ′ = (f − f ′) dµ = 0, and so λ = λ′

and ∫
f − f ′ dµ = 0

so f = f ′ µ-almost everywhere.

This immediately extends to the σ-finite measures.Strategy: The sequence of
corollaries which follow are a very
typical strategy for extending
from finite positive measures to
σ-finite measures, signed
measures and complex measures.
The σ-finite case is obtained by
subdividing into a countable
number of finite chunks. The
signed case is obtained by
applying the σ-finite case to the
Jordan decomposition, and the
complex case is obtained by
applying the signed case to the
real and imaginary parts.

Corollary 3.8.3 (Lebesgue-Radon-Nikodym)
Let ν and µ σ-finite positive measures on (X,M). Then there exist unique
σ-finite measures λ and ρ on (X,M) such that λ ⊥ ρ, ρ � µ and ν = λ + ρ.
Furthermore, there is a µ-integrable function f : X → [0,∞], unique up to
modifications on a µ-null set, such that dρ = f dµ.

Proof:
We can divide X into a countable disjoint union of sets An with µ(An) <∞

and ν(An) < ∞. Letting µn(E) = µ(E ∩ An) and νn(E) = µ(E ∩ An), we can
break νn into measures λn and ρn = fn dµn such that λn ⊥ µn, and λn is null
and fn is 0 on the compliment of A. Letting λ =

∑
λn and f =

∑
fn, we have

that ν = λ+ f dµ and λ ⊥ µ. Uniqueness follows as for the finite case.

By applying the above to the positive and negative parts of a σ-finite signed
measure, and then taking the difference of the measures so obtained, we can
extend the result to signed measures.

Corollary 3.8.4 (Lebesgue-Radon-Nikodym)
Let ν be a σ-finite signed measure and µ a σ-finite measure on (X,M). Then
there exist unique σ-finite signed measures λ and ρ on (X,M) such that λ ⊥ ρ,
ρ � µ and ν = λ + ρ. Furthermore, there is a µ-integrable function f : X →
R(+), unique up to modifications on a µ-null set, such that dρ = f dµ.

Proof:
We take the Jordan decomposition ν = ν+ − ν− of ν. Then ν+ and ν−

are a σ-finite measures (in fact at least one of them must be finite), and so
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by the previous corollary we have that there are λ±, ρ±, and f±, such that
ν± = λ± + ρ± with ρ± � µ, µ ⊥ λ± and dρ± = f± dµ.

But then let f = f+ − f− so that ρ = ρ+ − ρ− satisfies dρ = f dµ, and let
λ = λ+ − λ−. Then

ν = ν+ − ν− = (λ+ + ρ+)− (λ− + ρ−) = λ+ ρ.

Also ρ � µ, since if µ(E) = 0 then ρ±(E) = 0, so ρ(E) = 0. Finally, λ ⊥ µ,
since there are disjoint sets E± and F± such that E± ∪ F± = X, µ(E±) = 0
and λ±(F±) = 0, so if we let E = E+ ∪ E− and F = F+ ∩ F−, then E and F
are disjoint with E ∪ F = X,

µ(E) ≤ µ(E+) + µ(E−) = 0

and if A ⊆ F , then
λ(A) = λ+(A)− λ−(A) = 0,

so F is λ-null.

Similarly, this may be extended to complex measures using the previous
corollary on the real and imaginary parts of the measure.

Corollary 3.8.5 (Lebesgue-Radon-Nikodym)
Let ν be a complex measure and µ a σ-finite measure on (X,M). Then there
exist unique complex measures λ and ρ on (X,M) such that λ ⊥ ρ, ρ� µ and
ν = λ+ ρ. Furthermore, there is a µ-integrable function f : X → C, unique up
to modifications on a µ-null set, such that dρ = f dµ.

We call ν = ρ + λ the Lebesgue decomposition of ρ with respect to λ.
The function f is called the Radon-Nikodym derivative of ν with respect to
µ, and we write

dν

dµ
= f.

The sorts of things that you expect to hold for derivatives hold for the
Radon-Nikodym derivative.

Proposition 3.8.6
Let ν, ν1 and ν2 be signed or complex measures, and µ and λ are measures, on
(X,M).

1. If ν1 and ν2 � µ and α is a scalar, then if ν = ν1 + αν2, we have ν � µ Note: This is linearity of for the
Radon-Nikodym derivative.and

dν

dµ
=
dν1
dµ

+ α
dν2
dµ

µ-almost everywhere.

2. If ν � µ then if g ∈ L1(ν), g dν
dµ ∈ L

1(µ), and Note: This is the substitution
rule for Lebesgue integration.∫

g dν =
∫
g
dν

dµ
dµ.
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3. If ν � µ and µ� λ, then ν � λ and Note: This is the chain rule for
the Radon-Nikodym derivative.

dν

dλ
=
dν

dµ

dµ

dλ
λ-almost everywhere.

4. If µ� λ and λ� µ, then

dµ

dλ
= 1/(dλ/dµ) λ-almost everywhere.

Proof:
For the first part, note that

ν(E) = ν1(E) + αν2(E) =
∫

E

dν1
dµ

dµ+ α

∫
E

dν2
dµ

dµ =
∫

E

dν1
dµ

+ α

∫
E

dν2
dµ

dµ.

Hence dν =
(

dν1
dµ + α

∫
E

dν2
dµ

)
dµ, and so ν � µ and by the uniqueness of the

Radon-Nikodym derivative

dν

dµ
=
dν1
dµ

+ α
dν2
dµ

µ-almost everywhere.
For the second part, assume that ν is a σ-finite positive measure.
If g = χE for E, then∫

g dν =
∫

E

dν =
∫

E

dν

dµ
dµ =

∫
g
dν

dµ
dµ.

This can then be extended to simple functions∫
g dν =

∫ ∑
ckχEk

dν =
∑

ck

∫
χEk

dν =
∑

ck

∫
χEk

dν

dµ
dµ =

∫
g
dν

dµ
dµ,

and then since every non-negative measurable function is the pointwise limit
of and increasing sequence of simple functions, we can use the monotone con-
vergence theorem to extend to non-negative measurable functions: if fn are an
increasing sequence of simple functions which converge pointwise to g, then fn

dν
dµ

is an increasing sequence of non-negative functions which converges pointwise
to g dν

dµ , so that∫
g dν = lim

n→∞

∫
fn dν = lim

n→∞

∫
fn
dν

dµ
dµ =

∫
g
dν

dµ
.

Finally, if g ∈ L1(ν), then∫ ∣∣∣∣g dνdµ
∣∣∣∣ dµ =

∫
|g|dν
dµ

dµ =
∫
|g| dν <∞,
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so g dν
dµ ∈ L

1(µ), and∫
g dν =

∫
g+ dν −

∫
g− dν =

∫
g+
dν

dµ
dµ−

∫
g−
dν

dµ
dµ =

∫
g
dν

dµ
dµ.

We then extend this to signed and complex measures in the usual way, by
first applying the result for positive measures to the Jordan decomposition, and
then applying the result for signed measures to the real and imaginary parts of
a complex measure.

For the third part, replace ν by µ and µ by λ, and let g = χE
dν
dµ , we get

ν(E) =
∫

E

dν

dµ
dµ =

∫
g dµ =

∫
g
dµ

dλ
dλ =

∫
E

dν

dµ

dµ

dλ
dλ,

so dν =
(

dν
dµ

dµ
dλ

)
dλ and hence ν � λ. By the uniqueness of the Radon-Nikodym

derivative, we then conclude that

dν

dλ
=
dν

dµ

dµ

dλ

λ-almost everywhere.
For the last part, replacing ν by λ in the 3rd part, we get

dλ

dµ

dµ

dλ
=
dλ

dλ
= 1,

λ-almost everywhere, so that

dµ

dλ
= 1/(dλ/dµ).

λ-almost everywhere.

Note that in general, products and quotients of measures are not measures
(indeed, the quotient probably doesn’t even make sense as a set function), so we
would not expect any analogue of the product or quotient rules for the Radon-
Nikodym derivative.

Exercises

3.8.1. Show that if ν � µ and ν ⊥ µ, then ν(E) = 0 for every measurable set
E.
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Chapter 4

Introduction to Functional
Analysis

In earlier sections of these notes we have relied upon the fact that functions and
measures have natural vector space structures. These vector spaces are infinite
dimensional, in general, and so we have not been able to escape without using
other techniques to get results. These extra techniques usually either come
from identifying “positive” elements within the vector space, such as positive
functions and measures; or from notions of convergence or topology.

For this reason, we abstract these situations and consider general vector
spaces which have a topology.

4.1 Topological Vector Spaces

We start with the most general definition.

Definition 4.1.1
A topological vector space is a real or complex vector space V together with
a topology on V such that

+ :V × V → V and · :F× V → V

(v, w) 7→ v + w, (λ, v) 7→ λV,

are continuous.

This is typical of the way in which algebraic objects are given topological
structure. One simply insists that the appropriate operations (in this case ad-
dition and scalar multiplication) are continuous.

General topological vector spaces tend not to have much structure. Fortu-
nately most topological vector spaces that are encountered in practice satisfy
much stronger conditions.
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Perhaps the next most stringent condition to insist on is that there be some
notion of the length or size of a vector. The axioms required for a length are
encapsualted in the idea of a norm.

Definition 4.1.2
A seminorm on a vector space V is a function ρ : V → [0,∞) such that

(i) ρ(v + w) ≤ ρ(v) + ρ(w) (triangle inequality),

(ii) ρ(λv) = |λ|ρ(v),

for all v, w ∈ V and scalars λ. If in addition ρ(v) = 0 implies v = 0, then the
seminorm is called a norm. A norm is traditionally denoted by ‖ · ‖. A vector
space V together with a norm is called a normed vector space.

It is worthwhile noting that the triangle inequality implies that

ρ(v) ≤ ρ(w) + ρ(v − w) and ρ(w) ≤ ρ(v) + ρ(v − w),

which can be combined to give

|ρ(v)− ρ(w)| ≤ ρ(v − w).

It is not hard to see that a norm immediately defines a metric on the vector
space by

d(v, w) = ‖v − w‖.

Recall that a metric space is called complete if every Cauchy sequence converges,
that is if vn is a sequence in V such that for every ε > 0 there is some N such
that d(vn, vm) < ε for all n, m ≥ N then vn converges to something.

Proposition 4.1.1
A normed vector space V is a topological vector space with the metric topology
coming from the norm.

Proof:
Let vn → v and wn → w in the metric topology on V . Then

d(vn+wn, v+w) = ‖vn+wn−(v+w)‖ ≤ ‖vn−v‖+‖wn−w‖ = d(vn, v)+d(wn, w).

Hence vn + wn → v + w, and so addition is continuous.
Similarly, if λn → λ,

d(λnvn, λv) = ‖λnvn − λv‖
= ‖λnvn − λnv + λnv − λv‖ ≤ |λn|‖vn − v‖+ |λn − λ|‖v‖
= |λn|d(vn, v) + |λn − λ|‖v‖.

Hence λnvn → λv, and so scalar multiplication is continuous.
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Example 4.1.1
Consider the vector space Cb(X) of continuous, bounded functions on a

locally compact Hausdorff topological space X. The uniform norm is defined
by

‖f‖u = sup
x∈X

|f(x)|.

This is a norm, and fn → f in this vector space if and only if fn → f uniformly.
In fact, this norm makes Cb(X) a complete metric space, since every uniformly
Cauchy sequence converges. 3

Another common situation in analysis is that rather than a norm giving the
topology, a collection of seminorms gives the topology.

Example 4.1.2
Consider Cb(X) again, but this time define seminorms ρx for each x ∈ X by

ρx(f) = |f(x)|.

Then fn → f in the topology given by the seminorms iff fn(x) → f(x) for
all x ∈ X. In other words, this is the topology of pointwise convergence of
functions. 3

Example 4.1.3
Let C∞([0, 1]) be the vector space of all infinitely differentiable functions.

Define seminorms ρn for n ∈ N by

ρn(f) = ‖f (n)‖u.

Then fn → f in the topology determined by these seminorms iff f (n) → f (n)

uniformly for all n ∈ N. 3

Sometimes we only have a seminorm around, but in such cases we may reduce
to a normed vector space by taking quotients of vector spaces. Recall that if
V is a vector space, and W is a vector subspace of V , then we can construct
the quotient vector space V/W as follows. If we say that u ∼ v if u − v ∈ W ,
then this defines an equivalence relation on V , and one can see that the quotient
space V/ ∼ is a vector space, where [u] + [v] = [u+ v] and λ[v] = [λv]. We note
that if ρ is a seminorm, then ker ρ = {w ∈ V : ρ(w) = 0} is a vector subspace of
V , and so we have a vector space V/ ker ρ. We can define a norm on this space
by

‖[v]‖ρ = ρ(v).

This is well-defined, since if u ∈ [v], ρ(u− v) = 0, so

ρ(u) ≤ ρ(u− v) + ρ(v) = ρ(v),

but similarly ρ(v) ≤ ρ(u). Hence it does not matter which equivalence class
representative we choose to define the norm. One can easily check that the
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other norm properties hold, in particular that if ‖[v]‖ρ = 0, then ρ(v) = 0, and
so v ∈ ker ρ, and hence [v] = [0] = 0.

Example 4.1.4
Let (X,M, µ) be a measure space. Then the set of functions in L1(X,µ) is

a vector space, since if f , g ∈ L1(X,µ), and c any constant, then∫
|f + g| dµ ≤

∫
|f |+ |g| dµ =

∫
|f | dµ+

∫
|g| dµ <∞,

so f + g ∈ L1(X,µ); and∫
|cf | dµ = |c|

∫
|f | dµ <∞,

so cf ∈ L1(X,µ).
Furthermore

‖f‖1 =
∫
|f | dµ

is a seminorm on L1(X,µ), since

‖f + g‖1 =
∫
|f + g| dµ ≤

∫
|f | dµ+

∫
|g| dµ = ‖f‖1 + ‖g‖1.

and
‖cf‖1 =

∫
|cf | dµ = |c|

∫
|f | dµ = |c|‖f‖1.

However, it is not a norm, since ‖f‖1 = 0 if and only if f = 0 µ-almost
everywhere. So we can take the quotient of this vector space with all functions
which are equal to 0 almost everywhere and get a new vector space with a norm,
as described above. This quotient can be concretely understood as saying that
two functions are equivalent if they are equal almost everywhere. In other words,
if two functions differ on a set of measure zero, we think of them as being the
same.

It is common practice to write “f” for the equivalence class of f in this con-
text, but when we want to make it clear that we are considering the equivalence
class, not the function, we will use f for [f ]. Hence

‖f ‖1 =
∫
|f | dµ

is a norm.
Similarly, it is customary to call the quotient vector space L1(X,µ). 3

In some cases we are lucky enough to have an inner product on the vector
space.

Definition 4.1.3
An inner product on a complex vector space V is a function 〈·, ·〉 : V → R (or
C) such that
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(i) 〈λv + w, u〉 = λ〈v, u〉+ 〈w, u〉 (linearity in first variable),

(ii) 〈w, v〉 = 〈v, w〉 (conjugate symmetry)

(iii) 〈v, v〉 > 0 if v 6= 0,

for all u, v, w ∈ V and scalars λ ∈ C.
The axioms for a real vector space are the same, except that one gets sym-

mmetry instead of conjugate symmetry: 〈w, v〉 = 〈v, w〉.

The conjugate symmetry and linearity conditions imply that the inner prod-
uct is conjugate linear in the second variable:

〈v, λw + u〉 = λ〈v, w〉+ 〈v, u〉.

Example 4.1.5
The most familiar example of an inner product is the standard inner product

(or dot product) on Cn. Given x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn we
have

〈x, y〉 =
n∑

k=1

xkyk.

3

Example 4.1.6
Let Mn be the vector space of all n-by-n complex matrices. The adjoint A∗

of such a matrix A is the conjugate transpose of the matrix, ie. the transpose
of the matrix whose entries are the complex conjugates of the entries of A. The
adjoint has the properties

(λA)∗ = λA∗ (A+B)∗ = A∗ +B∗ (AB)∗ = B∗A∗ (A∗)∗ = A.

A matrix is called self-adjoint if A∗ = A, and is called unitary if U∗U = UU∗ =
I, where I is the identity matrix.

Given any matrix A one can find an upper triangular matrix T and a uni-
tary matrix U such that A = U∗TU . If A is self-adjoint, then T can be the
diagonalization of A and U has columns which are eigenvectors of A.

The trace, trA, of a matrix is the sum of the diagonal entries from top-left
to bottom-right. The trace has the properties

tr(λA) = λtrA tr(A+B) = trA+trB tr(AB) = tr(BA) tr(A∗) = trA.

If A is self-adjoint, then tr(A) = tr(U∗DU) = tr(U∗UD) = trD is equal to the
sum of the eigenvalues of A.

If we define
〈A,B〉 = tr(B∗A),
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then we observe that

〈λA+B,C〉 = tr(C∗(λA+B)) = tr(λC∗A+ C∗B) = λtr(C∗A) + tr(C∗B)
= λ〈A,C〉+ 〈B,C〉,

and

〈B,A〉 = tr(A∗B) = tr((A∗B)∗)∗ = tr(B∗(A∗)∗) = tr(B∗A) = 〈A,B〉.

Also if 〈A,A〉 = 0, then trA∗A = 0, so

0 = tr(A∗A) = tr((U∗T ∗U)∗U∗TU)
= tr(U∗T ∗UU∗TU)
= tr(U∗T ∗TU)
= tr(U∗UT ∗T )
= tr(T ∗T ).

Now T ∗T is a self-adjoint matrix with non-negative eigenvalues, and so if the
trace is 0 then the sum of the eigenvalues is also 0, and since they are non-
negative, every eigenvalue is 0 and hence T ∗T = 0. A simple induction argument
on n shows that this implies that T = 0 and hence A = 0.

Therefore this is an inner product. 3

Given an inner product, one can define

‖v‖ = 〈v, v〉1/2.

As the notation would indicate, this is a norm, and it is easy to see that

‖v‖ = 0 ⇐⇒ v = 0,

and
‖λv‖ = (λλ〈v, v〉)1/2 = |λ|‖v‖.

Showing that the triangle inequality holds is slightly harder, and requires the
Shwarz inequality.

Lemma 4.1.2 (Shwarz Inequality)
If 〈·, ·〉 is an inner product on V , then |〈v, w〉| ≤ ‖v‖‖w‖ for all v and w ∈ V .
We get equality if and only if v and w are linearly dependant.

Proof:
If 〈v, w〉 = 0, then the result is immediate.
If 〈v, w〉 ≥ 0, then v 6= 0 and w 6= 0, and for any t ∈ R,

0 ≤ 〈v − tw, v − tw〉 = 〈v, v〉 − t〈v, w〉 − t〈w, v〉+ t2〈w,w〉
= ‖v‖2 − 2t〈v, w〉+ t2‖w‖2.
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But this is quadratic in t, and so has absolute minimum value when

t =
〈v, w〉
‖w‖2

,

and hence if we use this value of t, we have

0 ≤ ‖v‖2 − 〈v, w〉2

‖w‖2
,

and the inequality is immediate from this. We get equality if and only if v−tw =
0.

Finally, if 〈v, w〉 = c 6= 0, then we can take the polar decomposition of
c = reiθ. Then 〈e−iθv, w〉 = r ≥ 0 and

|〈v, w〉| = 〈e−iθv, w〉 ≤ ‖eiθv‖‖w‖ = ‖v‖‖w‖,

with equality iff eiθv − tw = 0.

Corollary 4.1.3
If 〈·, ·〉 is an inner product on V , then ‖v‖ = 〈v, v〉1/2 is a norm on V .

Proof:
We have shown everything except the triangle inequality. We have that

‖v + w‖2 = ‖v‖2 + 2 Re〈v, w〉+ ‖w‖2

≤ ‖v‖2 + 2|〈v, w〉|+ ‖w‖2

≤ ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2 = (‖v‖+ ‖w‖)2.

So the triangle inequality holds.

Every inner product space is therefore naturally a topological vector space
in the metric topology coming from the norm given by the inner product.

Example 4.1.7
The norm corresponding to the standard inner product on Cn is the usual

Euclidean 2-norm

‖x‖2 =

(
n∑

k=1

|x|2
)1/2

.

3

Example 4.1.8
The norm corresponding to the inner product of Example 4.1.6,

‖A‖ = (trA∗A)1/2
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is called the Hilbert-Schmidt norm. 3

Recalling metric space theory, we remember that complete metric spaces are
particularly nice. As we will see, many important examples of normed vector
spaces in analysis are complete. In fact, this property is of sufficient importance
to give such spaces a special name.

Definition 4.1.4
If V is a normed vector space which is complete as a metric space (ie. every
Cauchy sequence converges), we call it a Banach space. A complete inner
product space is called a Hilbert space.

Hence every Hilbert space is a Banach space.
Testing for completeness can be a hassle when using the traditional definition

of every Cauchy sequence converging. In the context of normed vector spaces,
there is another test which is often more convenient.

Let V be a normed vector space. A series
∞∑

k=1

vk

converges in V if the sequence of partial sums,

sn =
n∑

k=1

vk,

converge in V . A series is absolutely convergent if
∞∑

k=1

‖vk‖

converges.

Proposition 4.1.4
If V is a normed vector space, V is complete if and only if every absolutely
convergent series converges.

Proof:
First assume that V is complete. If we have an absolutely convergent series,

then for all ε > 0, there is some N such that
m∑

k=n+1

‖vk‖ =
m∑

k=1

‖vk‖ −
n∑

k=1

‖vk‖ < ε

for all m, n ≥ M , since the sequence of partial sums of the norms converge in
the scalar field, and so is a Cauchy sequence. But then for all m, n ≥ N ,

‖sm − sn‖ = ‖
m∑

k=n+1

vk‖ ≤
m∑

k=n+1

‖vk‖ < ε.
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So the sequence of partial sums sn is Cauchy in V , and hence converges.
Conversely, if every absolutely convergent series converges in V , let vn be a

Cauchy sequence in V . Then we can find Nk such that N1 < N2 < . . . and

‖vn − vm‖ < 2−k

for all n, m ≥ Nk. Let w1 = vN1 and wk = vNk
− vNk−1 . Then we have partial

sums
n∑

k=1

wk = vNn ,

and for k > 1, ‖wk‖ = ‖vNk
− vNk−1‖ < 2−k+1, so

∞∑
k=1

‖wk‖ < ‖w1‖+
∞∑

k=2

2−k+1 = ‖w1‖+ 1 <∞.

So this series is absolutely convergent, and so the series is convergent. But
this means that the partial sums vNn converge to some v ∈ V . So we have a
subsequence of our original Cauchy sequence which converges. But then given
any ε > 0, we can find some k such that both 2−k < ε/2 and ‖vNk

− v‖ < ε/2.
Then for all n ≥ Nk,

‖vn − v‖ ≤ ‖vn − vNk
‖+ ‖vNk

− v‖ < ε.

So vn → v. Hence every Cauchy sequence converges, and V is complete.

This result is particularly important when considering vector spaces of inte-
grable functions.

Example 4.1.9
Let (X,M, µ) be a measure space. We know that the vector space L1(X,µ)

of equivalence classes of L1 functions has a norm on it. For clarity, we will use f
to represent the equivalence class of all functions equal to f almost everywhere.
Concretely, then, the norm is

‖f ‖1 =
∫
|f | dµ.

Let
∑∞

k=1 fk be an absolutely convergent series in L1(X,µ). In other words,

∞∑
k=1

‖fk‖1 =
∞∑

k=1

∫
|fk| dµ <∞.

But Proposition 3.3.9 tells us that there is an L1 function f such that

f =
∞∑

k=1

fk
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almost everywhere. Hence

f =
∞∑

k=1

fk

and so any absolutely convergent series converges.
Therefore L1(X,µ) is a Banach space. 3

There are several constructions that give new vector spaces from other vector
spaces. The most obvious are taking a subspace of a vector space, and taking a
quotient by a subspace. Any subspace of a topological vector space is automat-
ically a topological vector space in the relative topology. However, although if
W is a vector subspace of a Banach space V it is a normed vector space, it may
not be a Banach space.

Proposition 4.1.5
Let V be a Banach space. Then a vector subspace W is a Banach space if and
only if it is closed.

Proof:
Let wn be a Cauchy sequence in W . Then it is a Cauchy sequence in V and

so it converges to some v ∈ V . But since W is closed, the limit of any sequence
in W must be in W , and so v ∈W . Hence W is complete.

4.2 Linear Operators

You will recall that in linear algebra, the most important functions were linear
maps bewteen vector spaces. For topological vector spaces, we typically insist
that these linear maps must be continuous as well as linear.

Definition 4.2.1
Let V and W be topological vector spaces. We define L(V,W ) to be the set of
all continuous linear maps T : V →W . We let L(V ) = L(V, V ). We commonly
call maps between topological vector spaces operators, and write T (v) = Tv.

If V and W are normed vector spaces, we say that a linear map T : V →W
is bounded if

sup{‖Tv‖ : ‖v‖ ≤ 1} <∞,

or equivalently, there is some K such that ‖Tv‖ ≤ K‖v‖ for all v ∈ V . We
denote the set of all bounded operators by B(V,W ), and B(V ) = B(V, V ).

Note that the definition of boundedness in this context is distinct from the
idea of a bounded function. The only linear operator which can be bounded
as a function is the zero operator 0v = 0. Boundedness for linear operators is
equivalent to being bounded as a function restricted to the unit ball.

Also note that K = ‖T‖ works in the definition, ie.

‖Tv‖ ≤ ‖T‖‖v‖.
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A bounded linear map is an isometry if ‖Tv‖ = ‖v‖ for all v ∈ V , and in this
case ‖T‖ = 1. If ‖T‖ < 1, then T is a contraction, since it shrinks the length of
every vector.

It is through these linear maps that we can identify when two topological
vector spaces are the same.

Definition 4.2.2
Let V and W be two topological vector spaces. We say that they are isomorphic
if there is a linear homeomorphism from V to W .

We say two Banach spaces V and W are isometrically isomorphic if there is a
linear isomorphism which is an isometry (and so therefore has an inverse which
is also isometric). We write V ∼= W if V and W are isometrically isomorphic.

If V and W are two Banach spaces, they are isomorphic if and only if there
is a bounded linear isomorphism with bounded inverse from V to W . Banach
spaces may be isomorphic, but not isometrically isomorphic.

Example 4.2.1
Consider Rd with the norms

‖x‖p =

(
d∑

k=1

|xk|p
)1/p

for p = 1, 2. One can verify that ‖x‖1 ≤ ‖x‖2 ≤ d‖x‖1, and so the identity
map is an isomorphism between the Banach spaces (Rd, ‖ · ‖1) and (Rd, ‖ · ‖2).
However, it is not an isometric isomorphism. 3

We note that both L(V,W ) and B(V,W ) are themselves vector spaces. In-
deed, if we say that Tn → T iff Tnv → Tv for all v ∈ V , we have that L(V,W )
is a topological vector space.

Proposition 4.2.1
Let V and W be normed vector spaces, and let T ∈ B(V,W ). Then

‖T‖ = sup{‖Tv‖ : ‖v‖ ≤ 1}.

defines a norm on B(V,W ), called the operator norm, and so B(V,W ) is itself
a normed vector space.

Proof:
We check that all 3 conditions required of a norm hold.
Given T and S ∈ B(V,W ) we have that

‖T + S‖ = sup{‖Tv + Sv‖ : ‖v‖ ≤ 1}
≤ sup{‖Tv‖+ ‖Sv‖ : ‖v‖ ≤ 1}
≤ sup{‖Tv‖ : ‖v‖ ≤ 1}+ sup{‖Sv‖ : ‖v‖ ≤ 1}
≤ ‖T‖+ ‖S‖.
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Given λ ∈ C, we have

‖λT‖ = sup{‖λTv‖ : ‖v‖ ≤ 1} = |λ| sup{‖Tv‖ : ‖v‖ ≤ 1} = |λ|‖Tv‖.

Finally, if ‖T‖ = 0, then ‖Tv‖ = 0 for all v ∈ V with ‖v‖ ≤ 1, and so
Tv = 0. Now if ‖v‖ ≥ 1, we have that

Tv = T

(
‖v‖ 1

‖v‖
v

)
= ‖v‖T

(
1
‖v‖

v

)
= 0

since
∥∥∥ 1
‖v‖v

∥∥∥ = 1.

Hence ‖ · ‖ is a norm.

It turns out that for normed vector spaces, L(V,W ) and B(V,W ) are the
same.

Proposition 4.2.2
If V and W are topological vector spaces, then T : V →W is continuous if and
only if T is continuous at 0.

If V and W are normed vector spaces, then T : V →W is continuous if and
only if it is bounded.

Proof:
Let V and W are topological vector spaces and T : V → W . It is trivial

that if T is continuous, then it is continuous at 0. On the other hand, if T
is continuous at 0, then given any convergent sequence, vn → v, we have that
vn − v → 0, and so

Tvn − Tv = T (vn − v) → T (0) = 0.

So Tvn → Tv. So T is continuous at every point, and so it is continuous.
Now let V and W be normed spaces. If T is bounded, there is some K

such that ‖Tv‖ ≤ K‖v‖ for all v ∈ V . Given any ε > 0, let δ = ε/K so if
‖v1 − v2‖ < δ, then

‖Tv1 − Tv2‖ = ‖T (v1 − v2)‖ ≤ K‖v1 − v2‖ = ε.

So T is continuous.
On the other hand, if T is continuous, it is continuous at 0. Letting ε = 1,

there is some δ > 0 such that

‖Tv‖ = ‖T (v − 0)‖ < 1

for all v ∈ V with ‖v‖ < δ. For general v ∈ V , (δ/‖v‖)v ∈ B(0, δ), so

‖Tv‖ =
∥∥∥∥‖v‖δ T

(
δ

‖v‖
v

)∥∥∥∥ =
‖v‖
δ

∥∥∥∥T ( δ

‖v‖
v

)∥∥∥∥ < 1
δ
‖v‖.

So T is bounded.
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The same linear operator may have quite different properties, depending on
what topology we are dealing with.

Example 4.2.2
Consider the vector space C∞([0, 1]), and the differentiation operator

D : C∞([0, 1]) → C∞([0, 1])

given by Df = f ′. This is a linear map by the usual rules of calculus. If we con-
sider the topology on C∞([0, 1]) given in Example 4.1.3, then D is continuous,
since for all functions f ∈ C∞([0, 1]), we have

ρn(Df) = ρn(f ′) = ‖f (n+1)‖u = ρn+1(f).

Hence if fk → f in C∞([0, 1]), we have ρn(fk − f) → 0 for all n, and so

ρn(Dfk −Df) = ρn(D(fk − f)) = ρn+1(fk − f) → 0.

Therefore Dfk → Df , and so D is continuous.
On the other hand, if we consider the topology on C∞([0, 1]) coming from

the uniform norm alone, this is not a bounded operator, since for each n ∈ N,
let fn = sinnx. Then

‖ sinnx‖u = 1,

but
‖D(sinnx)‖u = ‖n sinnx‖ = n.

So there is no K such that ‖Df‖u ≤ K‖f‖u for all f ∈ C∞([0, 1]). Since it is
not bounded, it is also not continuous in this topology. 3

Example 4.2.3
Consider Cb(X) with the uniform norm. The evaluation maps

ϕx(f) = f(x)

are bounded linear maps from Cb(X) to C. Moreover, since

|ϕx(f)| = |f(x)| ≤ sup
x∈X

|f(x)| = ‖f‖u,

we have that ‖ϕx‖ = 1. 3

Example 4.2.4
Consider Cb(R) with the uniform norm. Let λt : Cb(R) → Cb(R) be the

translation map
(λtf)(x) = f(x+ t).

It is easy to see that ‖λtf‖u = ‖f‖u, so this is an isometry, and so ‖λt‖ = 1. 3
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Example 4.2.5
Let (X,M, µ) and (Y,N , ν) be σ-finite measure spaces. We know that

L1(X,µ) and L1(Y, ν) are Banach spaces as discussed in Example 4.1.9. Let
K : X × Y → C be M⊗N -measurable with some constant C such that∫

|K(x, y)| dµ(x) ≤ C

as in Example 3.6.4. Then the function IK : L1(X,µ) → L1(Y, ν) defined by
the integral kernel K,

(IKf)(y) =
∫
K(x, y)f(x) dµ(x)

is a linear operator, and a consequence of Example 3.6.4 is that

‖IK‖ ≤ C.

3

Not only is B(V,W ) a normed vector space, it is in fact a Banach space if
W is a Banach space.

Proposition 4.2.3
If V and W are normed vector spaces, then if W is complete, so is B(V,W ).

Proof:
Let Tn be a Cauchy sequence in B(V,W ). Since

|‖Tn‖ − ‖Tm‖| ≤ ‖Tn − Tm‖,

we have that ‖Tn‖ is a Cauchy sequence in R and so converges.
Also for each v ∈ V , Tnv is a Cauchy sequence in W , since for any ε > 0,

we can find N such that ‖Tn − Tm‖ < ε/‖v‖ for all n, m > N , and then
‖Tnv − Tmv‖ ≤ ‖Tn − Tm‖‖v‖ = ε. So each sequence Tnv converges.

Define a function T : V →W by

Tv = lim
n→∞

Tnv.

T is linear, since

T (λv + w) = lim
n→∞

Tn(λv + w) = λ lim
n→∞

Tnv + lim
n→∞

Tnw = λTv + Tw.

We observe that
|‖Tv‖ − ‖Tnv‖| ≤ ‖Tv − Tnv‖,

and so, since ‖Tv − Tnv‖ → 0,

‖Tv‖ = lim
n→∞

‖Tnv‖.
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We then have that and T is bounded, since

‖Tv‖ = lim
n→∞

‖Tnv‖ ≤ ( lim
n→∞

‖Tn‖)‖v‖.

Finally, ‖Tn − T‖ → 0, since for n sufficiently large and ‖v‖ ≤ 1,

‖Tnv − Tv‖ = lim
m→∞

‖Tnv − Tmv‖ ≤ lim
m→∞

‖Tn − Tm‖‖v‖ ≤ ε‖v‖ ≤ ε,

and hence
‖Tn − T‖ = sup{‖Tnv − Tv‖ : ‖v‖ ≤ 1} ≤ ε.

In particular, this means that B(V,C) (or B(V,R)) is a Banach space.
Since elements of L(V,W ) and B(V,W ) are functions, it is an obvious ques-

tion to ask what happens when two such operators are composed. Since com-
position of continuous functions are continuous, and composition of linear func-
tions are linear, it is immediate that if T ∈ L(V,W ) and S ∈ L(W,U), then
ST = S ◦ T ∈ L(V,U). Norms of bounded operators have a particularly nice
relationship when composed

Proposition 4.2.4
Let U , V , and W be normed vector spaces, and let T ∈ B(V,W ), S ∈ B(W,U).
Then ‖ST‖ ≤ ‖S‖‖T‖.

Proof:
We have that

‖ST‖ = sup{‖S(Tv)‖ : ‖v‖ ≤ 1}
≤ sup{‖S‖‖Tv‖ : ‖v‖ ≤ 1}
= ‖S‖‖T‖.

A consequence of this is that B(V ) = B(V, V ) has a natural multiplicative
structure defined by composition.

Definition 4.2.3
If V is a Banach space, the Banach space V ∗ = B(V,C) is called the dual of
V . If V ∼= (V ∗)∗, then we say that V is reflexive.

Note that since L(V,C) and B(V,C) are the same as vector spaces, we have
two different topologies of interest on V ∗: the norm topology, and the topology
coming from pointwise convergence. We call this second topology the weak-*
topology. These two topologies are somewhat analagous to the uniform and
pointwise topologies on functions.
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4.3 Case Study: Lp Spaces

In this section we will develop an important class of examples of Banach spaces.
Throughout, let (X,M, µ) be a measure space, and L(X,µ) be the vector space
of measurable functions modulo the equivalence relation f ∼ g if f = g µ-almost
everywhere. As we did in Example ??, we will write f for the equivalence class
of f .

For 0 < p <∞, we define

‖f ‖p = ‖f‖p =
(∫

|f |p dµ
)1/p

.

Clearly this is not affected by chenges to f on null-sets, so this value is in fact
well-defined.

For p = ∞, we also define

‖f ‖∞ = ‖f‖∞ = inf{a ≥ 0 : µ({x : |f(x)| > a}) = 0},

where we assume inf ∅ = ∞ as usual. In other words ‖f ‖∞ is the smallest value
such that {x : |f(x)| > a} is null. This quantity is called the esential supremum
of f . Again, if g ∈ f then {x : |g(x)| > a} ⊆ {x : |f(x)| > a}∪{x : g(x) 6= f(x)},
and since the latter is a union of null sets, the former is null. Therefore ‖f ‖∞
does not depend on choice of equivalence class representative. One can think of
this as being like the uniform norm, but neglecting values on sets of measure 0.
Indeed, an equivalent definition is that

‖f ‖∞ = inf{‖g‖u : g ∈ f }.

We let
Lp(X,µ) = {f : f ∈ L(X,µ), ‖f ‖p <∞}.

Where µ is implict we will write Lp(X).

4.3.1 Lp Spaces are Banach Spaces

We now set about showing that ‖.‖p are norms in many cases, and that the
spaces Lp(X,µ) are in fact Banach spaces. We start by showing that they are
vector spaces.

Lemma 4.3.1
If 0 < p ≤ ∞, Lp(X,µ) is a vector space.

Proof:
We note that for 0 < p <∞,Strategy: we show here that

‖f ‖p
p < ∞, which immediately

implies that ‖f ‖p < ∞. This is a
very common strategy, as it
avoids cumbersome p-th roots in
our calculations.

|f + g|p ≤ (2 max |f |, |g|)p = 2p max |f |p, |g|p ≤ 2p(|f |p + |g|p),

and so

‖f + g‖p
p =

∫
|f + g|p dµ ≤ 2p

∫
|f |p dµ+ 2p

∫
|g|p dµ <∞.
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If p = ∞, then if a and b > 0 such that

µ({x : |f(x)| > a}) = 0 and µ({x : |g(x)| > b}) = 0,

then
µ({x : |f(x) + g(x)| > a+ b}) = 0.

Hence

‖f + g‖∞ = inf{c : µ({x : |f(x) + g(x)| > c}) = 0}
≤ inf{a+ b : µ({x : |f(x)| > a}) = 0, µ({x : |g(x)| > b}) = 0} <∞.

The fact that λf ∈ Lp(X,µ) if f ∈ Lp(X,µ) for λ ∈ C is straightforward.

As the notation suggests, we want ‖ · ‖p to be a norm. In fact this is only
the case when p ≥ 1, and the stumbling block is the triangle inequality.

Lemma 4.3.2
If a ≥ 0, b ≥ 0 and 0 < λ < 1, then

aλb1−λ ≤ λa+ (1− λ)b.

and these are equal iff a = b.

Proof:
If a or b is 0 the result is trivial. By rearranging and dividing by b, the

inequality is equivalent to saying

aλ/bλ − λa/b ≤ 1− λ,

or letting t = a/b,
tλ − λt ≤ (1− λ).

But by elementary calculus, tλ − λt has an absolute maxiumum at t = 1, and
the value of this absolute maximum is 1 − λ. Hence the inequality holds, and
we have equality iff a/b = 1.

The next result is vital for the theory of Lp spaces, and will be used repeat-
edly.

Theorem 4.3.3 (Hölder’s Inequality)
Let 1 < p <∞ and 1/p+ 1/q = 1, and f , g ∈ L(X,µ). Then

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof:
If ‖f‖p = 0 or ‖g‖q = 0, then f = 0 or g = 0 µ-a.e., and so the result is

trivial. If ‖f‖p = ∞ or ‖g‖q = ∞, then the result is also trivial.
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For each x ∈ X, we may apply Lemma 4.3.2 with

a =
|f(x)|p

‖f‖p
p
, b =

|g(x)|q

‖g‖q
q
,

and λ = 1/p (so 1− λ = 1/q). After some simplification, we have

|f(x)g(x)|
‖f‖p‖g‖q

≤ |f(x)|p

p‖f‖p
p

+
|g(x)|q

q‖g‖q
q
,

and we can then integrate both sides to get

‖fg‖1
‖f‖p‖g‖q

≤
‖f‖p

p

p‖f‖p
p

+
‖g‖q

q

q‖g‖q
q

=
1
p

+
1
q

= 1,

which gives the result.

Note that we have equality in the above precisely when a = b for almost
every x, or in other words, if

‖g‖q
q|f |p = ‖f‖p

p|g|q µ-a.e.

or equivalently, when |f |p and |g|q are scalar multiples of one another.
Pairs of numbers p and q which satisfy 1 < p, q <∞ and

1
p

+
1
q

= 1

are important in the theory of Lp spaces. Note that we can always find q =
p/(1−p). We call q the conjugate exponent of p. Thinking of 1/∞ as 0, we will
also say that 1 is the conjugate exponent of ∞ and ∞ the conjugate exponent
of 1. Also note that 2 is its own conjugate exponent.

Theorem 4.3.4 (Minkowski’s Inequality)
If 1 ≤ p ≤ ∞, and f , g ∈ Lp(X), then

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Proof:
The case p = 1 is easy.
Consider 1 < p < ∞. If f + g = 0 µ-a.e., the result is trivial. If not, note

that

|f + g|p = |f + g||f + g|p−1 ≤ (|f |+ |g|)|f + g|p−1 = |f ||f + g|p−1 + |g||f + g|p−1,

and integrate both sides:∫
|f + g|p dµ ≤

∫
|f ||f + g|p−1 dµ+

∫
|g||f + g|p−1 dµ.
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Then Hölder’s inequality applied twice to the left-hand side tells us that∫
|f + g|p dµ ≤ ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

≤ (‖f‖p + ‖g‖p)
(∫

|f + g|(p−1)q dµ

)1/q

≤ (‖f‖p + ‖g‖p)
(∫

|f + g|p dµ
)1/q

,

since p = (p− 1)q. But then

‖f‖p + ‖g‖p ≥
(∫

|f + g|p dµ
)1−1/q

= ‖f + g‖p,

as required.
Finally, for p = ∞, we observe that if x is such that |f(x) + g(x)| > ‖f‖∞ +

‖g‖∞, then either |f(x)| > ‖f‖∞ or |g(x)| > ‖g‖∞, so

{x : |f(x)+g(x)| > ‖f‖∞+‖g‖∞} ⊆ {x : |f(x)| > ‖f‖∞}∪{x : |g(x)| > ‖g‖∞}.

But these are both µ-null sets, so the union is µ-null, and so

‖f + g‖∞ = inf{a ≥ 0 : µ({x : |f(x) + g(x)| > a}) = 0} ≤ ‖f‖∞ + ‖g‖∞.

Corollary 4.3.5
For 1 ≤ p ≤ ∞, Lp(X) is a normed vector space.

Proof:
It is immediate that if ‖f ‖p = 0, then f = 0 µ-a.e. and so f = 0.
It is immeduate from the definition that ‖λf ‖∞ = |λ|‖f ‖∞. For 1 ≤ p <∞,

we have

‖λf ‖p =
(∫

|λf‖ dµ
)1/p

= |λ|‖f ‖p.

Finally, Minkowski’s inequality immediately implies the triangle inequality
for equivalence classes.

Indeed, these are Banach spaces.

Theorem 4.3.6
For 1 ≤ p ≤ ∞, Lp(X) is a Banach space.

Proof:
For 1 ≤ p <∞, we use Proposition 4.1.4. Assume that we have an absolutely

convergent series in Lp(X),
∞∑

k=1

‖fk‖p = K <∞.
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Let sn be the partial sum

sn =
n∑

k=1

|fk|,

so by Minkowski’s inequality,

‖sn‖p ≤
n∑

k=1

‖fk‖p = K <∞,

and since sn is a monotone sequence, the monotone convergence theorem tells
us that sn converges pointwise a.e. to some function s, and∫

sp dµ = lim
n→∞

∫
sp

n dµ ≤ Kp <∞.

Hence

s =
∞∑

k=1

|fk| ∈ Lp(X),

which implies in particular that this function is finite almost everywhere. But
this means that Proposition 3.3.9 applies, so the series

∞∑
k=1

fn

converges pointwise a.e. to some function f . Clearly |f | ≤ s, and so f ∈ Lp(X),
and furthermore

|f −
n∑

k=1

fk|p ≤ (|f |+
n∑

k=1

|fk|)p ≤ (2s)p,

so these are L1 functions, and∥∥∥∥∥f −
n∑

k=1

fk

∥∥∥∥∥
p

p

=
∫
|f −

n∑
k=1

fk|p dµ→ 0

by the dominated convergence theorem. So the series converges in Lp, and so
Proposition 4.1.4 tells us that this is a Banach space.

p = ∞ is an exercise.

It is perhaps worth considering why ‖ · ‖p is not a norm for 0 < p < 1. For
any a and b > 0, one can see that

ap + bp > (a+ b)p,

and if we can find any two disjoint sets A and B of finite measure, then

‖χA + χB‖p = (µ(A) + µ(B))1/p > µ(A)1/p + µ(B)1/p = ‖χA‖p + ‖χB‖p.
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Hence the triangle inequality cannot hold.
The case of L2(X,µ) is special, because it turns out that this is in fact a

Hilbert space. We define an inner product on L2(X,µ) by

〈f , g〉 =
∫
fg dµ.

The first thing to note is that this is actually finite for functions in L2(X,µ),
by Hölder’s inequality with p = q = 2:

|〈f , f 〉| ≤
∫
|fg| dµ

= ‖f g‖1
≤ ‖f ‖2‖g‖2 = ‖f ‖2‖g‖2 <∞.

It is clear that this is linear in the first variable and conjugate linear in the
second. The fact that it is antisymmetric is also immediate. Finally

〈f , f 〉 =
∫
ff dµ =

∫
|f |2 dµ = ‖f ‖22,

so the inner product of f with itself is 0 if and only if f = 0 almost everywhere.
This equality also tells us that the norm given by the inner product is exactly

the norm ‖.‖2, and the fact that L2(X,µ) is a complete in this norm, means
that it is in fact a Hilbert space.

We now investigate the relationship between Lp-spaces for different values of
p in two special cases. The first is the case where the measure space (X,M, µ)
is finite.

Proposition 4.3.7
If (X,M, µ) is a finite measure space, and 0 < p < q ≤ ∞, then Lq(X,µ) ⊆
Lp(X,µ).

Proof:
As is often the case, we deal with q = ∞ separately. In this case we note

that if f ∈ L∞(X), we have |f |p ≤ ‖f‖p
q <∞ µ-a.e., and so

‖f ‖p
p =

∫
|f |p dµ ≤

∫
‖f ‖p

∞ dµ ≤ ‖f ‖p
∞µ(X) <∞.

So f ∈ Lp(X).
If q < ∞, we note that q/p and q/(p − q) are conjugate exponents (since

q/p > 1), and so we can use Hölder’s inequality with these exponents to turn a
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power of p into a power of q:

‖f ‖p
p =

∫
|f |p dµ = ‖|f |p1‖1

≤ ‖|f |p‖q/p‖1‖q/(p−q)

≤
(∫

|f |q dµ
)p/q

µ(X)q/(p−q)

≤ ‖f ‖p
qµ(X)q/(p−q) <∞,

so if f ∈ Lq(X), then f ∈ Lp(X).

We note that in general, this is a proper inclusion.

Example 4.3.1
Consider the finite measure space ([0, 1],m), where m is Lebesgure measure

restricted to the interval [0, 1]. Given any 0 < p < q ≤ ∞, choose r so that
p < r < q. Then the function

f(x) = x−1/r

is in Lp([0, 1]), because∫
|x−1/r|p dm =

∫ 1

0

x−p/r dx =
[

1
1− p/r

x1−p/r

]1
0

=
1

1− p/r
x1−p/r,

since p/r < 1. However f /∈ Lq([0, 1]), because the same calculation with q has∫
|x−1/r|q dm =

∫ 1

0

x−q/r dx = ∞,

because q/r > 1.
Hence in this case Lq is a proper subset of Lp(X). 3

The other special case where we have a relationship between the Lp spaces
is when we have the counting measure on a set. This special case is significant
enough that we have a special notation for such Lp spaces.

Definition 4.3.1
Let c be the counting measure on a set X. We define

`p(X) = Lp(X, c).

We note that since the only null set for counting measure is the empty set,
f = {f}, ie. there is no real distinction between equivalence classes and the
actual functions.

It turns out that for fixed p, the only thing which distinguishes these spaces
is the cardinality of X.
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Proposition 4.3.8
If X and Y are sets with |X| = |Y |, and 1 ≤ p ≤ ∞, then `p(X) is isometrically
isomorphic to `p(Y ).

Proof:
Since X and Y have the same cardinality, we have a bijection ϕ : X → Y ,

which in turn induces a map ϕ∗ from functions on Y to functions on X by

ϕ∗f = f ◦ ϕ.

This function ϕ∗ is clearly linear, and furthermore, if f ∈ `p(Y ), we have

‖ϕ∗f‖p
p =

∑
x∈X

|(ϕ∗f)(x)|p

=
∑
x∈X

|f(ϕ(x))|p

=
∑
y∈Y

|f(y)|p = ‖f‖p
p,

since ϕ is bijective. Hence ϕ∗ is an isometry. It is also a vector space isomor-
phism, since (ϕ−1)∗ is also a linear map, and (ϕ∗)−1 = (ϕ−1)∗.

For this reason, particularly if |X| is finite, we sometimes use the notation

`p|X| = `p(X).

For `p spaces, we get the reverse inclusion compared to finite measure spaces.

Proposition 4.3.9
Let X be a set, and 0 < p < q ≤ ∞. Then `p(X) ⊆ `q(X).

To prove this, we use a little lemma which tells us that if a function is both
in Lp and Lq, it is also in Lr for every r in between p and q.

Lemma 4.3.10
If 0 < p < r < q ≤ ∞, then Lq(X) ∩ Lp(X) ⊆ Lr(X), and moreover if
f ∈ Lq(X) ∩ Lp(X),

‖f ‖r ≤ ‖f ‖λ
p‖f ‖1−λ

q ,

where λ is such that
1
r

=
λ

p
+

1− λ

q
,

or, if q = ∞, 1/r = λ/p.

Proof:
If q <∞, we can use Hölder’s inequality with conjugate exponents

p

λr
and

q

(1− λ)r
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to obtain:

‖f ‖r
r =

∫
|f |λr|f |(1−λ)r dµ

≤ ‖|f |λr‖ p
λr
‖|f |(1−λ)r‖ q

(1−λ)r

= ‖f ‖λr
p ‖f ‖(1−λ)r

q ,

and so
‖f ‖r ≤ ‖f ‖λ

p‖f ‖1−λ
q <∞

as required.
If q = ∞, we have

‖f ‖r
r =

∫
|f |r−p|f |p dµ ≤ ‖f ‖r−p

∞ ‖f ‖p
p,

so, since λ = p/r, taking rth roots gives

‖f ‖r = ‖f ‖1−λ
∞ ‖f ‖λ

p <∞,

as required.

Proof (Proposition 4.3.9):
If q = ∞, we have that

‖f‖p
∞ ≤ sup

x∈X
|f(x)|p ≤

∑
x∈X

|f(x)|p = ‖f‖p
p <∞.

If q < ∞, then we use the Lemma with p < q < ∞ as our three exponents,
and the fact that we just showed that ‖f‖∞ ≤ ‖f‖p, to get

‖f‖q ≤ ‖f‖λ
p‖f‖1−λ

∞ ≤ ‖f‖p,

where λ = p/q.

Once again, we expect the inclusion of `p spaces to be proper in general.

Example 4.3.2
Consider `p(N). This is essentially the space of series which are absolutely

p-summable, ie. if f : k 7→ ak is in `p(N)

∞∑
k=1

|ak|p <∞.

For 0 < p < r < q ≤ ∞, the function

f(k) = k−1/r
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is in Lq(N), since

‖f‖q
q =

∞∑
k=1

k−q/r <∞,

since q/r > 1, or if q = ∞, since ‖f‖∞ = 1. However f is not in Lp(N), since

‖f‖p
p =

∞∑
k=1

k−p/r = ∞,

since p/r < 1.
So in particular, we have a proper inclusion `p(X) ⊂ `q(X). 3

Example 4.3.3
Let X be a finite set. Then (X,P(X), c) is a finite measure space, and so we

have that `p(X) and `q(X) are isomorphic as vector spaces, since every vector
of each is an element of the other by combining the two inclusion Propositions
we have just proved.

Indeed, they are both isomorphic as vector spaces to C|X|, and one can show
that they are isomorphic as topological vector spaces to C|X| with the topology
of pointwise (ie. coordinate-wise) convergence. However the norms are different
in general, and so they are not isometrically isomorphic as Banach spaces. 3

4.3.2 Duals of Lp Spaces

Having spent some time showing that Lp spaces are Banach spaces, we would like
to now investigate some of their properties. Based on our previous discussion,
the question of what the duals of these Banach spaces look like would seem to
be of interest.

The first thing that we need to do in looking at the duals of these spaces, is
to try to identify an interesting class of linear functionals.

Lemma 4.3.11
Let (X,m) be a measure space, and let p and q be conjugate exponents with
1 ≤ q <∞. For each g ∈ Lq(X), we have that

ϕg (f ) =
∫
fg dµ

is a bounded linear functional on Lp(X), with ‖ϕg‖ = ‖g‖q. The result holds
for q = ∞ if m is semifinite.

Proof:
It is immediate that ϕg is linear. Hölder’s inequality also immediately tells

us that
|ϕg (f )| ≤ ‖fg‖1 ≤ ‖f ‖p‖g‖q,
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so ‖ϕg‖ ≤ ‖g‖q, and hence ϕg ∈ (Lp(X))∗.
We trivially have ‖ϕg‖ = ‖g‖q if g = 0 µ-a.e. If g > 0 and q <∞, we let Strategy: we need to find a

function f such that ‖f ‖p = 1
and |ϕg (f )| = ‖g‖q .

f =
gq−1

‖g‖q−1
q

.

Then

‖f ‖p
p =

1

‖g‖(q−1)p
q

∫
g(q−1)p dµ =

‖g‖q
q

‖g‖q
q

= 1, (4.1)

and
|ϕg (f )| =

∫
fg dµ =

1
‖g‖q−1

q

∫
gq dµ = ‖g‖q,

with the first equality holding since both f and g are non-negative functions.
Hence we have that ‖ϕg‖ ≥ ‖g‖q.

For arbitrary g 6= 0, we use

f =
|g|q−1sign g
‖g‖q−1

q

instead, so that fg > 0.
Finally, if q = ∞ and µ is seminfinite, we know that for every ε > 0, we

can find a set B = {x : |g(x)| > ‖g‖∞ − ε} with µ(B) > 0, and since µ is
semifinite, we have an A ⊆ B such that 0 < µ(A) < ∞. If g > 0, then we let
f = µ(A)−1χA, so that

‖f ‖1 = µ(A)−1

∫
χA dµ = 1,

and

|ϕg (f )| =
∫
fg dµ = µ(A)−1

∫
A

g dµ ≥ µ(A)−1(µ(A)(‖g‖∞ − ε)) = ‖g‖∞ − ε.

So ‖ϕg‖ ≥ ‖g‖∞ − ε for all ε > 0, and so ‖ϕg‖ ≥ ‖g‖∞. Again, for arbitrary
g 6= 0, we use f = µ(A)−1χAsign g instead, so that fg ≥ 0.

Notice that the map g 7→ ϕg is itself a linear map, so this fact, together
with the above lemma, tells us that we have an isometric map from Lq(X,µ) to
the dual space (Lp(X,µ))∗. The obvious question to ask is whether or not this
gives us all of the linear functionals in the dual space, ie. is it a surjection?

The first step to showing this is to rule out the most obvious case: that we
can find linear functionals ϕg on Lp(X) where g is not in Lq(X). To do this,
we prove a sort of converse of Hölder’s inequality.

Theorem 4.3.12
Let (X,M, µ) be a σ-finite measure space, and p and q are conjugate exponents.
Let S be the set of all simple functions whose support is contained in a set of
finite measure. If g ∈ L(X,µ) is such that fg ∈ L1(X) for all f ∈ S, and

Mq = sup
{∣∣∣∣∫ fg dµ

∣∣∣∣ : f ∈ S, ‖f‖p = 1
}
<∞,
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then g ∈ Lq(X) and ‖g‖q = Mq(X).

Proof:
First assume that q < ∞. Since X is σ-finite, we can find sets En of finite

measure, with En ⊆ En+1 and

X =
∞⋃

n=1

En.

Assume that g > 0. We know that we can find an increasing sequence of
measurable simple functions ψn which converge pointwise to g, and by multi-
plying by χEn

we can assume without loss of generality that ψn is 0 off of En.
Letting

fn =
ψq−1

n

‖ψn‖q−1
q

,

we have ‖fn‖p = 1, by the same reasoning as (4.1). Fatou’s lemma then tells us
that

‖g‖q ≤ lim inf ‖ψn‖q

= lim inf
∫
fnψn dµ

≤ lim inf
∫
fng dµ ≤Mq(g).

Given general g, we simply have ψn → g pointwise, and we use

fn =
ψq−1

n signψn

‖ψn‖q−1
q

.

If q = ∞, then given any ε > 0 we consider A = {x : |g(x)| ≥ M∞(g) + ε}.
If µ(A) > 0, then there must be a subset B of A which has finite measure, and
then there are measurable simple functions ϕn which converge pointwise to g.
Letting fn = µ(B)−1signϕnχB , we have that

‖fn‖1 = µ(B)−1

∫
χB dµ = 1,

but ∫
fnϕn dµ = µ(B)−1

∫
B

|ϕn| dµ→ µ(B)−1

∫
B

|g| dµ ≥M∞(g) + ε.

But
Having shown that g ∈ Lq, we immediately get from Hölder’s inequality that∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ ∫ |fg| dµ ≤ ‖f‖p‖g‖q = ‖g‖q,
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for any f ∈ S with ‖f‖p = 1, so that Mq(g) ≤ ‖g‖q.

Indeed, this theorem holds even if µ is semifinite.
We are now in a position to prove the main duality result. Unfortunately, in

the general case the L∞ spaces are exceptional, and do not give us a nice duality
theory. However, for all other values of p, we get that (Lp(X))∗ is isometrically
isomorphic to Lq(X).

Theorem 4.3.13
Let (X,M, µ) be a σ-finite measure space, and p and q are conjugate exponents
with 1 ≤ p <∞. For all ϕ ∈ (Lp(X))∗ there is a g ∈ Lq(X) such that ϕ = ϕg.
For 1 < p <∞, this holds even if µ is not σ-finite.

Proof:
We first prove the case where µ is finite. In this case, every bounded function,

and hence every simple function, in in Lp. Given some ϕ ∈ (Lp)∗, we define a
complex measure νϕ by νϕ(E) = ϕ(χE). That this is a measure follows from
the fact that if E =

⋃∞
n=1En as a disjoint union, then χE =

∑∞
n=1 χEn

, and
the series converges in Lp, since∥∥∥∥∥χE −

n∑
k=1

χEk

∥∥∥∥∥
p

=

(∫ ∞∑
k=n

χEk
dµ

)1/p

= µ(
∞⋃

k=n

Ek)1/p,

which converges to 0 as n→∞. Since ϕ is bounded, and hence continuous,

νϕ(
n⋃

k=1

Ek) = ϕ(
∞∑

k=1

χEk
) =

∞∑
k=1

ϕ(χEk
) =

∞∑
k=1

νϕ(Ek).

The other properties of measures are immediate from the definition.
Also νϕ � µ, since if µ(E) = 0, then χE = 0 in Lp, and so νϕ(E) = ϕ(χE) =

ϕ(0) = 0. So the Radon-Nikodym theorem for complex measures tells us that
there is a Radon-Nikodym derivative g = dνϕ

dµ ∈ L1(µ), such that

ϕ(χE) = ν(E) =
∫

E

g dµ,

or, for any simple function f ,

ϕ(f) =
∫
fg dµ.

Furthermore, ∣∣∣∣∫ fg dµ

∣∣∣∣ = |ϕ(f)| ≤ ‖ϕ‖‖f‖p,

so by the converse of Hölder’s inequality, g ∈ Lq.
Finally, if µ is finite, then the simple functions are dense in Lp, since we

can find simple functions ψn which converge pointwise to any f ∈ Lp with
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|ψn| ≤ |f |, and then one can see that |f − ψn|p converges pointwise to 0, and
is bounded above by 2p|f |p, which is in L1, and so the dominated convergence
theorem tells us that

lim
n→∞

‖f − ψn‖p
p = lim

n→∞

∫
|f − ψn|p dµ = 0,

so ψn → f in Lp. But then it is immediate from the dominated convergence
theorem that

ϕ(f) = lim
n→∞

ϕ(ψn) = lim
n→∞

∫
ψng dµ =

∫
fg dµ.

Hence ϕ = ϕg for some g ∈ Lq.
Now we consider the case where µ is σ-finite. We can find an increasing

sequence of sets En such that X =
⋃∞

n=1En and 0 < µ(En) < ∞. Let Lp(En)
and Lq(En) be identified with the subspaces of Lp(X) and Lq(X) of functions
which are 0 off En. The arguement for finite measures tells us that for each n,
we can find a gn ∈ Lq(En) such that

ϕ(f) =
∫
fgn dµ

for all f ∈ Lp(En). Moreover ‖gn‖q = ‖ϕ|Lp(En)‖ ≤ ‖ϕ‖, and this is an increas-
ing sequence. Now gn is unique up to modification on a null set, so gn = gm on
En for n ≤ m. So we can define a pointwise limit

g = lim
n→∞

gn,

and in fact |gn| is increasing pointwise to |g|, so the monotone convergence
theorem tells us that

‖g‖q
q = lim

n→∞

∫
|gn|q dµ = lim

n→∞
‖gn‖q ≤ ‖ϕ‖ <∞,

so g ∈ Lq.
Finally, if f ∈ Lp, fχEn ∈ Lp(En), and fχEn → f in Lp by the dominated

convergence theorem. So

ϕ(f) = lim
n→∞

ϕ(fχEn) = lim
n→∞

∫
fgn dµ =

∫
fg dµ,

again using the dominated convergence theorem.

Corollary 4.3.14
If 1 < p <∞, then Lp(X) is reflexive.
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4.4 Hilbert Spaces

Recall that a Hilbert space is a vector space equipped with an inner product,
and which is complete (ie. a Banach space) in the norm

‖v‖ = 〈x, x〉1/2

derived from the inner product. Hilbert spaces are particularly nice examples
of Banach spaces, and their theory is important in many areas of analysis.

Example 4.4.1
If (X,µ) is a measure space, then L2(X,µ) is a Hilbert space with inner

product

〈f, g〉 =
∫
fg dµ.

Since ff = |f |2, it is immediate that the norm one gets from this inner product
is just the usual L2 norm ‖.‖2.

Indeed, if µ is the counting measure, we get

〈f, g〉 =
∑
x∈X

f(x)g(x),

which is very reminiscent of the inner products you will have seen from under-
graduate linear algebra. 3

This example is particularly instructive, since we will see that every Hilbert
space can be written in this form for an appropriate set.

We observing that the parallelogram law holds for vectors in a Hilbert space.

Proposition 4.4.1 (Parallelogram Law)
If H is a Hilbert space, then for all u, v ∈ H,

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2).

Proof:
We have

‖u+ v‖2 + ‖u− v‖2 = 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉+ 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉
= 2〈u, u〉+ 2〈v, v〉
= 2(‖u‖2 + ‖v‖2).

The inner product has an important continuity condition.
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Lemma 4.4.2
If un → u and vn → v in a Hilbert space H, then

lim
n→∞

〈un, vn〉 = 〈u, v〉.

Proof:
We observe that

|〈un, vn〉 − 〈u, v〉| = |〈un, vn〉 − 〈un, v〉+ 〈un, v〉 − 〈u, v〉|
≤ |〈un, vn − v〉|+ |〈un − u, v〉|
≤ ‖un‖‖vn − v‖+ ‖un − u‖‖v‖,

which converges to 0 as n→∞ since ‖vn − v‖ → 0, ‖un − u‖ → 0.

Hilbert spaces have the advantage over Banach spaces that the concept of
orthogonal vectors makes sense. We say that two vectors u and v in a Hilbert
space H are orthogonal, and write u ⊥ v, if

〈u, v〉 = 0.

This is clearly symmetric: u ⊥ v ⇐⇒ v ⊥ u. Given any subset X of H, we
define

X⊥ = {v : v ⊥ x,∀x ∈ X}.

Lemma 4.4.3
For any subset X of a Hilbert space H, the set X⊥ is a closed subspace of H.

Proof:
If u, v ∈ X⊥, then given any x ∈ X,

〈λu+ v, x〉 = λ〈u, x〉+ 〈v, x〉 = 0,

so λu+ v ∈ X⊥, and so X⊥ is a subspace.
Furthermore, if un ∈ X⊥, and un → u in H, then for any x ∈ X,

〈u, x〉 = lim
n→∞

〈un, x〉 = 0.

So X⊥ is closed.

In fact given a closed subspace K of a Hilbert space H, we have that K and
K⊥ span H. More precisely,

Theorem 4.4.4
If K is a closed subspace of a Hilbert space H, then every v ∈ H can be expessed

uniquely as a sum v = u+ w with u ∈ K and w ∈ K⊥, where u and w are the
unique elements with minimal the distance from v in K and K⊥, respectively.

Pythagoras’ theorem holds for mutually orthogonal sets of vectors.
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172 Introduction to Functional Analysis

Theorem 4.4.5
If H is a Hilbert space, and v1, . . . , vn ∈ H are pairwise orthogonal, ie. vk ⊥ vm

if k 6= m, then ∥∥∥∥∥
n∑

k=1

vk

∥∥∥∥∥
2

=
n∑

k=1

‖vk‖2.

Proof:
We have ∥∥∥∥∥

n∑
k=1

vk

∥∥∥∥∥
2

=

〈
n∑

k=1

vk,
n∑

m=1

vm

〉

=
n∑

m,k=1

〈vk, vm〉

=
n∑

k=1

〈vk, vk〉

=
n∑

k=1

‖vk‖2,

since 〈vk, vm〉 = 0 if k 6= m.

Mutually orthogonal sets of vectors are important in a number of areas of
analysis.

Example 4.4.2
Consider functions fk(θ) = eikθ ∈ L2([0, 2π]) for k ∈ Z. fk and fn are

orthogonal if k 6= n, since

〈fk, fn〉 =
∫
fkfn dm

=
∫ 2π

0

eikθe−inθ dθ

=
∫ 2π

0

ei(k−n)θ dθ

=
[

1
i(k − n)

ei(k−n)θ

]2π

0

= 0.

This example plays a key role in Fourier analysis. 3

Example 4.4.3
Consider a set X with counting measure. Let

ey(x) =

{
1 x = y

0 otherwise
.
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Then ey ⊥ ez if y 6= z. Indeed, in this example we have the additional fact that
‖ey‖ = 1. 3

The case where we have mutually orthogonal vectors whose norm is 1 is
of particular importance. We say that a set of vectors in a Hilbert space H,
{uα}α∈I where I is some index set, is orthonormal if uα ⊥ uβ for all α, β ∈ I
where α 6= β, and ‖uα‖α = 1 for all α ∈ I.

Orthonormal sets are common, since if we are given any countable collection
of vectors v1, v2, . . . , vn, . . . ∈ H which are linearly independent, ie.

vn /∈ span{v1, . . . , vn−1},

then we can obtain an orthonormal set via the Gram-Schmidt process. We work
inductively, setting

‖u1‖ =
1

‖v1‖
v1,

and then, given u1, . . . , un−1, letting

u′n = vn −
n−1∑
k=1

〈vn, uk〉uk,

and

un =
1

‖u′n‖
u′n.

It is easy to see that these vectors are orthonormal. That ‖un‖ = 1 is
immediate from the definition, and we can show that uk ⊥ un for all k and n
with k 6= n by induction. Assume that uk ⊥ um for all k, m ≤ n − 1 with
k 6= m. Then

〈un, uk〉 =
〈

1
‖u′n‖

u′n, uk

〉
=

1
‖u′n‖

〈
vn −

n−1∑
m=1

〈vn, um〉um, uk

〉

=
1

‖u′n‖

(
〈vn, uk〉 −

n−1∑
m=1

〈vn, um〉〈um, uk〉

)

=
1

‖u′n‖
(
〈vn, uk〉 − 〈vn, uk〉‖uk‖2

)
= 0.

Hence uk ⊥ um for all k, m ≤ n and k 6= m.
The Gram-Schmidt process has the clear disadvantage that it only works for

countable collections of linearly independent vectors. There are Hilbert spaces
which are not spanned by countable collections of linearly independent vectors,
such as `2(X) where X is uncountable.

We now want to show that all Hilbert spaces have an orthonormal basis.
The first step in this process is Bessel’s inequality.
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Theorem 4.4.6 (Bessel’s Inequality)
If {uα}α∈I is an orthonormal set in a Hilbert space H, then for any v ∈ H,∑

α∈I

|〈v, uα〉|2 ≤ ‖v‖2.

Note that this sum may have uncountably many terms, and is unordered.
It’s value is therefore

sup

{∑
α∈F

|〈v, uα〉|2 : F ⊆ I, F finite

}
.

and so the fact that the sum is finite means that at most a countable number
of them are non-zero.
Proof:

Let F ⊂ I be finite. Then, by Pythagoras,

0 ≤ ‖v −
∑
α∈F

〈v, uα〉uα‖2

≤ ‖v‖2 − 2 Re

〈
v,
∑
α∈F

〈v, uα〉uα

〉
+

∥∥∥∥∥∑
α∈F

〈v, uα〉uα

∥∥∥∥∥
2

= ‖v‖2 − 2 Re
∑
α∈F

〈v, uα〉〈v, uα〉+
∑
α∈F

‖〈v, uα〉uα‖2

= ‖v‖2 − 2
∑
α∈F

|〈v, uα〉|+
∑
α∈F

|〈v, uα〉|2 ‖uα‖2

≤ ‖v‖2 − 2
∑
α∈F

|〈v, uα〉|+
∑
α∈F

|〈v, uα〉|2.

Hence ∑
α∈F

|〈v, uα〉|2 ≤ ‖v‖2.

Taking suprema gives the result.

We can now show that every Hilbert space has an orthonormal basis.

Theorem 4.4.7
Let {uα}α∈I is an orthonormal set in a Hilbert space H. Then the following are
equivalent:

1. for all v ∈ H,
∑

α∈I |〈v, uα〉|2 = ‖v‖2.

2. for all v ∈ H, v =
∑

α∈I〈v, uα〉uα

3. if 〈v, uα = 0 for all α ∈ I, then v = 0.
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Proof:
(3) ⇒ (2): Given any vector v, define u by

u =
∑
α∈I

〈v, uα〉uα.

Then 〈u, uα〉 = 〈v, uα〉 for all αinI, and so

〈u− v, uα〉 = 〈u, uα〉 − 〈v, uα〉 = 0

for all α ∈ I, and so by (3) we conclude that u− v = 0 and hence that

v =
∑
α∈I

〈v, uα〉uα

(1) ⇒ (3): Assume that 〈v, uα = 0 for all α ∈ I. Then

‖v‖2 =
∑
α∈I

|〈v, uα〉|2 = 0

and hence ‖v‖ = 0. But this then implies that v = 0 from the axioms for a
norm.

(2) ⇒ (1): By the definition of the Hilbert space norm, we have that

‖v‖2 = 〈v, v〉 =

Proposition 4.4.8
Every Hilbert space has an orthonormal basis.

Proof:
This proof relies on a standard application of Zorn’s Lemma. Let O be the

set of all orthonormal sets in the Hilbert space H, with the partial order given
by set inclusion. Let C be a totally ordered subset of O, and let

U =
⋃

C∈C
C.

Then if v, w ∈ U we have that v ∈ C1 and u ∈ C2 for some C1, C2 ∈ C. Since C
is totally ordered, one of these orthonormal sets includes the other, so without
loss of generality assume that C1 ⊆ C2. But then v ∈ C2 and so

〈v, w〉 =

{
1 v = w

0 v 6= w.

Therefore U is an orthonormal set and it is an upper bound of C so the conditions
of Zorn’s lemma are satisfied. Thus we conclude that O has a maximal element
M .
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Assume that M is not complete. That is there is some v ∈ H such that
〈v, u〉 = 0 for all u ∈ M , but v 6= 0. But if this is the case, then let v′ = v/‖v‖
so that 〈v′, u〉 = 0 and ‖v′‖ = 1. Then the set M ∪ {v′} is an orthonormal set
which is strictly larget than the maximal orthonormal set M , contradicting the
maximality of M . Therefore M must be complete, and so it is an orthonormal
basis.

Recall that a topological space is separable if it has a countable dense subset.

Proposition 4.4.9
A Hilbert space is separable if and only if it has a countable orthonormal basis.

Proof:
If a Hilbert space H is separable then there is a countable set X = {xn}

which is dense. By discarding those xn which are linearly dependent on x1, x2, . . . , xn−1

we get a subset xnk
which is linearly independent and whose linear span includes

every element of X, and so is dense. Applying Gram-Schmidt to this subset we
get an orthonormal set uk whose linear span V is also dense. But if v ∈ H with
〈v, uk〉 = 0 but v 6= 0, then v ∈ V ⊥ and so the distance from v to V = (V ⊥)⊥

is ‖v‖ > 0, which implies that V is not dense. Therefore the orthonormal set
must be complete and so is a basis.

Conversely, if {uk} is a countable orthonormal set, then consider the count-
able dense subset Q of C consisting of those numbers with rational real and
imaginary parts. Let X be all finite linear combinations of elements of the or-
thonormal set with coefficients in Q. This set is dense, since given any v ∈ H
and any ε > 0 we have that there is some n such that

vn =
n∑

k=1

〈v, uk〉uk

has ‖v − vn‖ < ε/2, since {uk} is a basis, and for each k we can find qk ∈ Q
such that ‖〈v, uk〉 − qk|2 ≤ ε2/22k+2. Then

x =
n∑

k=1

qkuk ∈ X

and ‖vn − x‖2 ≤
∑n

k=1 ε
2/22k+2 < ε2/22. Therefore by the triangle inequality

‖v − x‖ < ε and so X is dense in H.

Most Hilbert spaces that are encountered in applications are separable.
When we consider bounded linear operators between two Hilbert spaces H

and K, the operators which preserve the inner product are of particular interest.
We say that a linear operator U : H → K is unitary if

〈Uv,Uw〉K = 〈v, w〉H .

A unitary operator is automatically bounded: indeed it must be an isometry
and so ‖U‖ = 1. It is straightforward that compositions of unitary operators
are again unitary.

April 26, 2006 Version 0.8



4.4. Hilbert Spaces 177

If, in addition U has an inverse, then

〈U−1v, U−1w〉H = 〈UU−1v, UU−1w〉K = 〈v, w〉K

and so U−1 is unitary, and hence an isometry. Such an invertible unitary is
therefore an isometric isomorphism, and we will call such invertible unitary
operators unitary isomorphisms. From a category theory standpoint, if there is
a unitary isomorphism between two Hilbert spaces then they are essentially the
same Hilbert space.

Proposition 4.4.10
Every Hilbert space H is unitarily isomorphic to `2(X) for some set X.

Proof:
Let {uα}α∈X be an orthonormal basis for H. Given v ∈ H, we define a

function fv : X → C by
fv(α) = 〈v, uα〉.

Then
‖fv‖22 = sumα∈X |〈v, uα〉|2 = ‖v‖2 <∞,

so fv ∈ `2(X). Therefore we can define a function U : H → `2(X) by Uv = fv.
It is straightforward to verify that U is linear. Moreover

〈Uv,Uw〉 =
∑
α∈X

fv(α)fw(α)

=
∑
α∈X

〈v, uα〉〈w, uα〉

and

〈v, w〉 =

〈∑
α∈X

〈v, uα〉uα, 〈
∑
β∈X

〈w, uβ〉uβ

〉
=
∑
α∈X

∑
β∈X

〈v, uα〉〈w, uβ〉〈uα, uβ〉

=
∑
α∈X

〈v, uα〉〈w, uα〉.

So U is unitary. Furthermore, given any f ∈ `2(X) we let

vf =
∑
α∈X

f(α)uα,

and then
‖vf‖2 =

∑
α∈X

|f(α)|2 = ‖f‖22,

so that vf in `2 and so Uvf = f which means that U is surjective; and since it
is an isometry it is injective. So U has an inverse map U−1f = vf and this is
easily seen to be linear. Hence U is a unitary isomorphism.
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Corollary 4.4.11
Every orthonormal basis of a Hilbert space has the same cardinality.

Proof:
Let {uα}α∈X and {vβ}β∈Y be two orthonormal bases in a Hilbert space H.

Then H is unitarily isomorphic to both `2(X) and `2(Y ). But this means that
`2(X) and `2(Y ) are unitarily isomorphic, and so in particular this means that
they are isometrically isomorphic. But from our work on `p spaces, we know
this happens if and only if |X| = |Y |.

We define the dimension of a Hilbert space to be the cardinality of its or-
thonormal basis.

Corollary 4.4.12
If two Hilbert spaces H and K have the same dimension then they are unitarily
isomorphic.

Corollary 4.4.13
If a Hilbert space is separable it is unitarily isomorphic to one of `2(N) or
`2({1, . . . , n}) ∼= Cn.

We now turn to consider the duals of Hilbert spaces. Since every Hilbert
space is unitarily isomorphic to `2(X) and `2(X) is reflexive, it follows that
every Hilbert space is reflexive. In fact, we know that (`2(X))∗ is isometrically
isomorphic to `2(X), so in addition the same will be true for general Hilbert
spaces. However, we would like to push this slightly further to see what happens
with unitary isomorphisms instead of isometric isomorphisms.

Given a Hilbert space H we define the conjugate space H of H to be the
vector space which as a set equals H, and with the same vector addition, but
with the scalar multiplication

(λ, v) 7→ λv

where this scalar multiplication in the definition is the original scalar multipli-
cation on H. One can verify that H is in fact a vector space, and moreover if
we define

〈v, w〉H = 〈w, v〉H
then H is in fact a Hilbert space. The identity map I : H → H defined by
Iv = v is a bijective isometry, since

‖v‖2H = 〈v, v〉H = 〈v, v〉H = ‖v‖2
H
,

but it is conjugate linear (ie. I(v + w) = Iv + Iw and I(λv) = λv) rather than
linear.

We will show that H∗ is isometrically isomorphic to H. We start by defining
linear functionals on H by

ϕw(v) = 〈v, w〉
for any w ∈ H. It is straightforward that this is a linear functional, but we need
the following lemma to give the norm.
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Lemma 4.4.14
Let H be a Hilbert space and ϕw : H → C as above. Then ϕw ∈ H∗ and
‖ϕw‖ = ‖w‖.

Proof:
By Cauchy-Schwarz, if ‖v‖ ≤ 1, then

|ϕw(v)| = |〈v, w〉| ≤ ‖v‖‖w‖ ≤ ‖w‖,

so ‖ϕw‖ ≤ ‖w‖, and ϕw ∈ H∗.
On the other hand, if we let v = w/‖w‖, so ‖v‖ = 1, then

|ϕ(w)| = |〈v, w〉| = |〈w,w〉|/‖w‖ = ‖w‖2/‖w‖ = ‖w‖.

Hence ‖ϕw‖ = ‖w‖.

Proposition 4.4.15
If H is a Hilbert space and ϕ ∈ H∗ then there is some w ∈ H such that ϕ = ϕw.

Proof:
Let kerϕ = {v ∈ H : ϕ(v) = 0}. It is easy to see that kerϕ is a linear

subspace of H, and it is closed, since if vn ∈ kerϕ with vn → v ∈ H, then

ϕ(v) = lim
n→∞

ϕ(vn) = 0

so v ∈ kerϕ.
Now if kerϕ = H we have ϕ(v) = 0 for all v and so ϕ = ϕ0.
Otherwise let V = (kerϕ)⊥. Let w ∈ V such that ‖w‖ = 1. There must

be such a w since if v ∈ V with ϕ(v) 6= 0 and so let w = v/‖v‖ which lies in
V since V is a closed linear subspace of H. We note that V = {λw : λ ∈ C},
since if v ∈ V then ϕ(v) = λ/‖ϕ‖ for some λ ∈ C, and that ϕ(v − λw) = 0, so
v − λw ∈ kerϕ ∩ V = {0}.

Now given any v ∈ H, let u = ϕ(v)w − ϕ(w)v. It is immediate that

ϕ(u) = ϕ(v)ϕ(w)− ϕ(w)ϕ(v)

and so u ∈ kerϕ. Therefore

0 = 〈u,w〉 = ϕ(v)‖w‖2 − ϕ(w)〈v, w〉 = ϕ(v)− 〈v, ϕ(w)w〉,

or equivalently
ϕ(v) = 〈v, ϕ(w)w〉 = ϕ

ϕ(w)w
(v).

Corollary 4.4.16
The operator Φ : w 7→ ϕw is an isometric isomorphism from H to H∗.
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Proof:
We first observe that it is linear:

Φ(w + λ · u)(v) = 〈v, w + λu〉 = 〈v, w〉+ λ〈v, u〉 = (Φ(w) + λΦ(u))(v).

and so Φ(w + λ · u) = Φ(w) + λΦ(u). That it is an isometry follows form
the lemma, that it is onto follows from the proposition. Hence the map is an
isometric isomorphism.

Proposition 4.4.17 (Polarization Identity)
For any u and v in a Hilbert space H, we have

〈u, v〉 =
1
4
(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
In other words, the inner product can be recovered completely from the

norm.

4.5 The Hahn-Banach Theorem

We now turn to consider the dual space of a Banach space as an abstract space.
Although we have, until this point, considered the dual as a well-populated
vector space, there is no a priori reason why there need by any bounded linear
functionals other than the zero functional.

More generally, we would like to be able to extend a linear functional defined
on a closed subspace of a Banach space to the whole of the Banach space. This
sort of “extension” or “lifting” problem is common in categorical approaches to
analysis, and can be seen again and again in different settings.

The approach to this problem uses the standard strategy of proving things
first in the case of R Banach spaces, and then using that result to extend to
general C Banach spaces.

Definition 4.5.1
A Minkowski functional on a real vector space V is a function ρ : V → R
such that ρ(u + v) ≤ ρ(u) + ρ(v) and ρ(λv) = λρ(v) for all u, v ∈ V and all
λ ≥ 0.

Every seminorm is a Minkowski functional, but the converse is not true, since
Minkowski functionals can take negative values. Minkowski functionals allow us
to state the Hahn-Banach theorem in its most general form. In practice when
applying the Hahn-Banach theorem, the Minkowski functional used will be a
multiple of a norm or an appropriate seminorm.

Theorem 4.5.1 (Hahn-Banach Theorem)
Let V be a real vector space, ρ a Minkowski functional on V , and W a subspace
of V . If ϕ : W → R is a linear functional on W such that ϕ(w) ≤ ρ(w) for all
w ∈ W , then there is a linear functional ψ : V → R such that ψ|W = ϕ and
ψ(v) ≤ ρ(v) for all v ∈ V .
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In fact, typically there will be many such ψ which extend ϕ. The proof of
Hahn-Banach relies on an application of Zorn’s Lemma in a typical sort of way:
we will look at all functionals which extend ϕ and then showw the existence of
a maximal one.
Proof:

We will call a linear functional ψ : W ′ → R a linear extension of ϕ if W ′ is
a subspace of V containing W , ψ|W = ϕ and ψ(w) ≤ ρ(w) for all w ∈ W ′. Let
F be the set of all such linear extensions, and we will define a partial order on
the set by saying that given ψ1 : W1 → R and ψ2 : W2 → R that ψ1 ≤ ψ2 if
W1 ⊆ W2 and ψ2|W1 = ψ1 (in other words the domain of the first is contained
in the domain of the second, and the two functionals agree on the common
domain).

Now consider a totally ordered subset O = {ψα : α ∈ I} of F . Let

W ′ =
⋃
α∈I

Wα

and note that W ′ is a subspace of V . We then define a new linear functional
ψ : W ′ → R by letting ψ(w) = ψα(w) for w ∈ Wα. This is a well-defined
function, since if w is an element of both Wα and Wβ then since O is totally
ordered we must have ψα ≤ ψβ or vice-versa. Assuming ψα ≤ ψβ , then w ∈Wα

and so ψβ(w) = ψα(w).
Furthermore ψ is a linear extension of ϕ. It is linear, since given u, w ∈W ′

there is some Wα which contains both and so given any λ ∈ R,

ψ(u+ λw) = ψα(u+ λw) = ψα(u) + λψα(w) = ψ(u) + λψ(w).

That ψ|W = ϕ is trivial. Finally if w ∈ W ′, then w ∈ Wα for some α and so
ψ(w) = ψα(w) ≤ ρ(w). In other words ψ ∈ F .

Finally, ψ is an upper bound for the totally ordered set O by the way it was
defined.

So the conditions of Zorn’s Lemma are satisfied, and therefore there is some
maximal linear extension ψ : W ′ → R. If we can show that the domain of this
linear extension is all of V , then we are done.

Assume otherwise, so that W ′ is a proper subspace of V . So there is some
vector u ∈ V \W ′. Consider the subspace W ′′ = W ′ + Ru. We will obtain a
contradiction by finding a linear extension on this subspace which extending ψ.

Note that for w1, w2 ∈W ′ we have that

ψ(w1) + ψ(w2) = ψ(w1 + w2) ≤ ρ(w1 + w2) ≤ ρ(w1 − u) + ρ(u+ w2),

or equivalently

ψ(w1)− ρ(w1 − u) ≤ ρ(u+ w2)− ψ(w2).

Taking suprema of the left hand side and infema of the right, we obtain

sup{ψ(w)− ρ(w − u) : w ∈W ′} ≤ inf{ρ(u+ w)− ψ(w) : w ∈W ′}
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and so there must be some number α such that

sup{ψ(w)− ρ(w − u) : w ∈W ′} ≤ α ≤ inf{ρ(u+ w)− ψ(w) : w ∈W ′}.

In other words we have that

ψ(w) + α ≤ ρ(w + u)

and
ψ(w)− α ≤ ρ(w − u)

for all w ∈W ′.
Now define ψ′ : W ′′ → R by ψ′(w + λu) = ψ(w) + λα. It is trivial that ψ′

is a linear and that ψ ≤ ψ′. We only need show that ψ′(w + λu) ≤ ρ(w + λu)
for all w ∈W ′ and λ ∈ R.

Now if λ = 0 this is true since ψ′(w + 0u) = ψ(w) ≤ ρ(w). If λ > 0 then

ψ(w + λu) = λ

(
ψ

(
1
λ
w

)
+ α

)
≤ λρ

(
1
λ
w + u

)
= ρ(w + λu),

and if λ < 0 then

ψ(w + λu) = |λ|
(
ψ

(
1
|λ|
w

)
− α

)
≤ |λ|ρ

(
1
|λ|
w − u

)
= ρ(w + λu).

So we have a contradiction of the maximality of ψ, and so our assumption
that W ′ is a proper subspace of V is incorrect.

Therefore any maximal linear extension of ϕ satisfies the theorem.

Note that if ρ is a seminorm then the condition ϕ(v) ≤ ρ(v) is equivalent to
|ϕ(v)| ≤ ρ(v), since

−ϕ(v) = ϕ(−v) ≤ ρ(−v) = ρ(v).

This gives the following statement for seminorms:

Corollary 4.5.2 (Complex Hahn-Banach Theorem)
Let V be a real vector space, ρ a seminorm on V , and W a subspace of V . If
ϕ : W → R is a linear functional on W such that |ϕ(w)| ≤ ρ(w) for all w ∈ W ,
then there is a linear functional ψ : V → R such that ψ|W = ϕ and |ψ(v)| ≤ ρ(v)
for all v ∈ V .
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To extend this result to complex vector spaces, we need to note that every
vector space over the complex numbers is automatically a vector space over the
real numbers. Furthermore, there is a direct correspondence between complex
linear functionals over the complex vector space, and real linear functionals over
the same vector space regarded as a real vector space.

Given V a complex vector space and ϕ : V → C a complex linear functional,
the functional ψ(v) = Reϕ(v) is a real linear functional since if λinR and v,
w ∈ V then

ψ(v + λw) = Re(ϕ(v) + λϕ(w)) = Reϕ(v) + λReϕ(w).

Furthermore, we can recover ϕ from ψ by noting that

ψ(v)− iψ(iv) = Reϕ(v)− iRe iϕ(v) = Reϕ(v) + i Imϕ(v) = ϕ(v).

Indeed, given any real linear functional ψ : V → R, we can define a new
functional ϕ : V → C by

ϕ(v) = ψ(v)− iψ(iv).

This new functional is linear, since if v, w ∈ V and λ = x+ iy ∈ C then

ϕ(v+λw) = ψ(v+xw+yiw)−iψ(iv+xiw−yw) = ψ(v)+xψ(w)+yψ(iw)−iψ(iv)−xiψ(iw)+yiψ(w) = ϕ(v)+xϕ(w)+iyϕ(w) = ϕ(v)+λϕ(w).

In other words, there is a bijection between L(V,C) and L(V,R).

Corollary 4.5.3 (Complex Hahn-Banach Theorem)
Let V be a complex vector space, ρ a seminorm on V , and W a subspace of
V . If ϕ : W → C is a linear functional on W such that |ϕ(w)| ≤ ρ(w) for all
w ∈ W , then there is a linear functional ψ : V → C such that ψ|W = ϕ and
|ψ(v)| ≤ ρ(v) for all v ∈ V .

Proof:
Let σ = Reϕ as in the previous discussion. Then we have that

|σ(w)| ≤ |ϕ(w)| ≤ ρ(w)

for all w ∈ W and so by the real Hahn-Banach theorem there is a real linear
functional τ : V → R which extends σ, so in particular |τ(v)| ≤ ρ(v) for all
v ∈ V .

Let ψ(v) = τ(v) − iτ(iv) as in the previous discussion. It is an immediate
consequence of the fact that τ |W = σ that ψ|W = ϕ. We also have that if
λ = signψ(v) then

|ψ(v)| = αψ(v) = ψ(αv) = τ(αv)− iτ(iαv) = τ(αv)

since the left-hand side is a real number. But then

|ψ(v)| = τ(αv) ≤ ρ(αv) = |α|ρ(v) = ρ(v).

So ψ is a complex linear extension of ϕ.

The Hahn-Banach theorem has a number of fundamental consequences.
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Theorem 4.5.4
Let V be a (complex) normed vector space.

1. If v 6= 0 then there is a ϕ ∈ V ∗ such that ‖ϕ‖ = 1 and ϕ(x) = ‖x‖.

2. V ∗ separates points of V .

3. If W ⊂ V is a proper closed subspace of V and v ∈ V \W then there
exists ϕ ∈ V ∗ such that ϕ(w) = 0 for all w ∈ W but ϕ(v) 6= 0; in fact ϕ
can be found so that ‖ϕ‖ = 1 and

ϕ(v) = inf{‖v − w‖ : w ∈W}.

4. For any v ∈ V there is a linear functional v̂ : V ∗ → C given by v̂(ϕ) = ϕ(v).
Then the function v 7→ v̂ is a linear isometry from V into V ∗∗.

Proof:
(i) Consider the linear functional ψ : Cv → C defined by ψ(λv) = λ‖v‖.

Since |ψ(λv)| = |λ|‖v‖ = ‖λv‖, the Hahn-Banach theorem tells us there is an
extension ϕ to V with |ϕ(v)| ≤ ‖v‖ for all v ∈ V , so that ‖ϕ‖ ≤ 1. But since
|ϕ(v)| = |ψ(v)| = ‖v‖ we have that ‖ϕ‖ ≥ 1, from which the result follows.

(ii) If v 6= w then by (i) there is a linear functional ϕ such that ϕ(v−w) 6= 0.
But that means that ϕ(v)−ϕ(w) 6= 0 and hence ϕ(v) 6= ϕ(w). So V ∗ separates
points of V .

(iii) In a similar manner to (i), consider the linear functional ψ on W + Cv
given by ψ(w + λv) = λδ where δ = inf{‖v − w‖ : w ∈W}. Then we have that

|ψ(w + λv)| = |λ|δ ≤ |λ|
∥∥∥∥v − −1

λ
w

∥∥∥∥ = ‖w + λv‖,

and so the Hahn-Banach theorem applies, given an extension ϕ which has the
required properties.

(iv) It is simple to verify that v̂ is a linear functional and that v̂ + λw =
v̂ + λŵ, so that the function is linear. Now we have that

|v̂(ϕ)| = |ϕ(v)| ≤ ‖ϕ‖‖v‖

so that ‖v̂‖ ≤ ‖v‖. On the other hand, from (i) we know that there is a linear
functional ϕ such that ‖ϕ‖ = 1 and ϕ(v) = ‖v‖, so that |v̂(ϕ)| = |ϕ(v)| = ‖v‖,
so we can conclude that ‖v̂‖ = ‖v‖. So the function is an isometry.

One consequence of the last part is that, since dual spaces are always com-
plete, the closure of the image of V underˆis a Banach space which contains an
isometric image of V as a dense subspace. We call this Banach space V̂ ⊆ V ∗∗

the completion of V . Indeed, if V is already a Banach space, this Banach space
is isometrically isomorphic to V .

The dual space of a normed vector space V determines a topology on the
vector space V called the weak topology. This topology is the topology on V
where a net (vλ)λ∈Λ converges to v if and only if

lim
λ∈Λ

ϕ(vλ) = ϕ(v)
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for every ϕ ∈ V ∗. Another way of thinking of this is that it is the topology of
pointwise convergence when we identify V with V̂ ; that is (vλ)λ∈Λ converges to
v if and only if (v̂λ)λ∈Λ converges to v̂ pointwise.

Proposition 4.5.5
If V is a normed vector space, then the weak topology on V is weaker than
the norm topology on V . In other words if (vλ)λ∈Λ converges to v in the norm
topology, then it converges in the weak topology.

More generally, for any subset of V ∗ one can define a weak topolgy by
insisting that the net converge for just those linear functionals in the set. Clearly
convergence in the overall weak topology implies convergence in these restricted
weak topologies.

Since V ∗ itself has a dual, V ∗∗ there is a weak topology on V ∗ coming from
this duality. However the weak topology generated by V̂ ⊆ V ∗∗ turns out to be
of particular importance and is called the weak-* topology. This is the topology
where a net (ϕλ)λ∈Λ converges to ϕ if and only

lim
λ∈Λ

v̂(ϕλ) = v̂(ϕ)

for all v ∈ V . But this is the same as saying

lim
λ∈Λ

ϕλ(v) = ϕ(v)

for all v ∈ V , so the weak-* topology is simply the topology of pointwise con-
vergence.

Proposition 4.5.6
If V is a normed vector space, then the weak-* topology on V ∗ is weaker than
the norm topology on V ∗. In other words if (ϕλ)λ∈Λ converges to ϕ in the norm
topology, then it converges in the weak-* topology.

One of the particularly nice properties of the weak-* topology is that the
unit ball of the dual is compact in this topology.

Theorem 4.5.7 (Alaoglu’s Theorem)
If V is a normed vector space then the closed unit ball B = {ϕ ∈ V ∗ : ‖ϕ‖ ≤ 1}
of V ∗ is compact in the weak-* topology.

Proof:
Let

X =
∏
v∈V

{z ∈ C : |z| ≤ ‖v‖}.

This set is a compact set in the product topology by Tychonoff’s theorem (The-
orem 2.5.9). Recall that elements of the product set are really functions from
the index set into each of the sets in the product, we can identify certain el-
ements of V ∗ as elements of X, namely those linear functionals ϕ such that
|ϕ(v)| ≤ ‖v‖ for all v ∈ V , i.e. the ϕ with ‖ϕ‖ ≤ 1.
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In other words B ⊆ X, and the topology on X is just the topology of
pointwise convergence, so we will have that B is compact in the weak-* topology
if and only it is closed when regarded as a subset of X in the product topology.

Let (ϕλ)λ∈Λ be a net in B which converges pointwise to some f ∈ X. In
other words

lim
λ∈Λ

ϕλ(v) = f(v)

for all v ∈ V . But then

f(v + αw) = lim
λ∈Λ

ϕλ(v + αw) = lim
λ∈Λ

ϕλ(v) + αϕλ(w) = f(v) + αf(w).

So f is linear, and ‖f‖ ≤ 1, so f ∈ B. Hence B is closed in the weak-* topology.

It is worthwhile mentioning again here that Tychonoff’s theorem is equiv-
alent to the axiom of choice, so this theorem, like the Hahn-Banach theorem,
relies on that axiom.

4.6 More on Bounded Operators

In this section we will investigate the structure of bounded operators between
Banach spaces in more detail. The key result that will drive the results in this
section is a theorem from metric space theory.

Recall that a set E in a topological space X is nowhere dense if the interior
of the closure is empty, i.e. (E)o = ∅, or equivalently it’s complement contains
an open, dense set. A subset E of X is meager or of the first category if
it is a countable union of nowhere dense sets. The complement of an meager
set is called residual. A set which is not of the first category is called of the
second category.

The Baire category theorem says that a complete metric space is always of
the second category as a subset of itself. More precisely:

Theorem 4.6.1 (Baire Category Theorem)
Let X be a complete metric space. Then X is not a countable union of nowhere
dense sets.

Equivalently, if (Un)n∈N is a countable sequence of open, dense subsets of
X, then

∞⋂
n=1

Un

is dense in X.

Typical uses of the Baire Category Theorem are in existence proofs: if you
can show that the set of elements which fail to have some property is meager,
then there must be some elements (in fact lots, in most cases) which have the
property.
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Since Banach spaces are complete metric spaces, it should not be suprising
that the Baire Category Theorem can be used to derive some significant results.

We say that if X and Y are topological spaces, then a function f : X → Y
is open if f(U) is open in Y for every open set U ⊂ X. In other words, the
image of open sets are open. If X and Y are a metric spaces, then a function is Note: compare with continuous

maps where inverse images of
open sets are open

open if and only if given any ball Bx,r = {y ∈ X : d(x, y) < r} in X centred at
x, then f(Bx,r) contains a ball Bf(x),s centred at f(x). If X and Y are normed
linear spaces and f is linear, then f is open if and only if f(B) contains a ball
in Y centred at the origin, where B is the unit ball of X.

Theorem 4.6.2 (Open Mapping Theorem)
If V and W are Banach spaces and T ∈ B(V,W ) is surjective, then T is open.

Proof:
Let Br be the ball of radius r in V centred at 0. We have that

V =
∞⋃

n=1

Bn

and so since T is surjective,

W = T (V ) =
∞⋃

n=1

T (Bn).

Assume that T (B1) is nowhere dense. Since the dilation maps Dn : W →W
defined by Dnw = nw are bounded and the inverses D−1

n = D1/n are also
bounded, these are homeomorphisms, and so T (Bn) = T (nB1) = nT (B1) =
DnT (B1) must also be nowhere dense. This implies that the complete metric
space W is a countable union of nowhere dense sets, which cannot happen by
the Baire Category Theorem. So T (B1) is not nowhere dense.

In other words, we can find some w0 ∈ W and r > 0 such that Bw0,4r ⊂
T (B1). Let w1 ∈ T (B1) such that ‖w0 − w1‖ < 2r, and since T is surjective
there is some v1 ∈ B1 such that w1 = Tv1. By the triangle inequality then we
have that Bw1,2r ⊂ T (B1), and so given any w ∈W with ‖w‖ < 2r we have

w = w1 + (w − w1) = Tv1 + (w − w1) ∈ T (v1 +B1) ⊆ T (B2).

Therefore, dividing throughout by 2, we have that if ‖w‖ < r then w ∈ T (B1).
Indeed, if ‖w‖ < r2−n then w ∈ T (B2−n).

Starting with w1 ∈W such that ‖w1‖ < r/2 we have that there is a v1 ∈ B1/2

such that ‖w1 − Tv1‖ < r/4, since w1 ∈ T (B1/2) and T (B1/2) is dense in that
set. Letting w2 = w1 − Tv1. We can then proceed inductively to find vn and
wn such that vn ∈ B2−n and wn = wn−1 − Tvn−1 with ‖wn‖ < r2−n.

Then
∞∑

n=1

vn
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is absolutely convergent, and hence convergent, and

Tv = T

( ∞∑
n=1

vn

)
=

∞∑
n=1

T (vn) = w1.

Since

‖v‖ ≤
∞∑

n=1

‖vn‖ <
∞∑

n=1

2−n = 1

we are done.

Corollary 4.6.3
If V and W are Banach spaces, and T ∈ B(V,W ) is a bijection, then T−1 ∈
B(W,V ), or equivalently, T is an isomorphism.

The graph of a function f : X → Y is the set

G(f) = {(x, f(x)) ∈ X × Y : x ∈ X}.

If T : V →W is a linear map between vector spaces, then the graph is a vector
subspace of the vector space V ×W . If V and W are topological vector spaces
and T is continuous, then G(T ) is a closed subspace of the topological vector
space V ×W , since if (vλ, T vλ) → (v, w) ∈ V ×W , then vλ → v in V , and so
by continuity

w = lim
λ∈Λ

Tvλ = T

(
lim
λ∈Λ

vλ

)
= Tv.

So (v, w) = (v, Tv) ∈ G(T ).
If V and W are Banach spaces, then the converse is true. We call a linear

map from V to W closed if G(T ) is closed in V ×W .

Theorem 4.6.4 (Closed Graph Theorem)
Let V and W be Banach spaces and T : V → W is a closed linear map then T
is bounded.

Proof:
Let πV : G(T ) → V and πW : G(T ) → W be the projections onto V and

W respectively, ie. πV (v, Tv) = v and πW (v, Tv) = Tv. By the definition of
the product topology πV and πW are continuous, and they are easily seen to be
linear, so πV ∈ B(G(T ), V ) and πW ∈ B(G(T ),W ).

Now since V and W are Banach spaces, so is V × W , and since G(T ) is
closed it is also a Banach space. But πV is a bijection from G(T ) to V and
so by the corollary of the open mapping theorem, π−1

V ∈ B(V,G(T )). Now
πW (π−1

V (v)) = πW (v, Tv) = Tv, so T = πW ◦ π−1
V and so T is bounded since it

is the composition of two bounded maps.

The significance of the closed graph theorem is that it can save some effort
when proving that a linear map is continuous. Rather than showing that if
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vn → v then Tvn → Tv, which requires first confirming that Tvn convereges
to something, and then showing that the something is the right thing, it is
sufficient to show that the graph is closed. In other words we only need to check
that if vn → v and Tvn → w then w = Tv.

It is worth mentioning that when considering unbounded linear maps defined
on a dense subset of a Banach space, knowing that the graph of the linear map
is closed often makes the linear map amenable to analysis. With appropriate
domains, differentiation and integration operators, although not bounded, are
closed.

The final result in the trio of theorems that are consequences of the Baire
category theorem is a result which allows you to infer facts about the norms of
families of bounded linear maps from knowledge of what the maps do to vectors.

Theorem 4.6.5 (Uniform Boundedness Principle)
Let V and W be normed vector spaces and F a family of bounded linear maps
from V to W , ie. F ⊆ B(V,W ).

1. If sup{‖Tv‖ : T ∈ F} < ∞ for every v in a non-meager subset F of V ,
then sup{‖T‖ : T ∈ F} <∞.

2. if V is a Banach space and sup{‖Tv‖ : T ∈ F} <∞ for every v ∈ V , then
sup{‖T‖ : T ∈ F} <∞.

Proof:
(i) Let

Fn = {v ∈ V : sup{‖Tv‖ : T ∈ F} ≤ n} =
⋂

T∈F
{v ∈ V : ‖Tv‖ ≤ n}.

Since the T is continuous, Fn is an intersection of closed sets, and so is itself
closed. But F is the union of the sets Fn and since F is non-meager, at least
one of the sets Fn is not nowhere dense. But since this Fn is closed, failure to
be nowhere dense means that the interior fo Fn is not empty, and so there is
some v0 ∈ F o

n and r > 0 such that Bv0,r ⊆ F o
n . But then taking closures we

have that Bv0,r ⊆ Fn.
But this means that B0,r ⊆ F2n, since if ‖v‖ ≤ r then v − v0 ∈ Fn and so

for any T ∈ F ,

‖Tv‖ ≤ ‖T (v − v0)‖+ ‖Tv0‖ ≤ n+ n = 2n.

Thefore if ‖v‖ ≤ 1 we have that ‖rv‖ ≤ r and so for any T ∈ F

‖Tv‖ =
∥∥∥∥1
r
T (rv)

∥∥∥∥ =
1
r
‖T (rv)‖ ≤ 1

r
2n.

So ‖T‖ ≤ 2n/r, and so

sup{‖T‖ : T ∈ F} ≤ 2n
r
<∞.

(ii) Follows immediately from (i) and the Baire category theorem, since V
is a Banach space and therefore not meager.
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4.7 Banach Algebras

We observe that if T : V →W is bounded, and S : W → X is bounded, then

‖(S ◦ T )v‖ = ‖S(Tv)‖ ≤ ‖S‖‖Tv‖ ≤ ‖S‖‖T‖‖v‖.

Hence ‖S ◦ T‖ ≤ ‖S‖‖T‖. We normally simply write ST for S ◦ T . In partic-
ular, this means that composition of bounded operators in B(V ) gives another
bounded operator on B(V ), so composition gives a product,

◦ : B(V )×B(V ) → B(V ),

and if Tn → T and Sn → S in B(V ), then

‖SnTn − ST‖ = ‖SnTn − SnT + SnT − ST‖ (4.2)
≤ ‖Sn(Tn − T )‖+ ‖(Sn − S)T‖ (4.3)
≤ ‖Sn‖‖Tn − T‖+ ‖Sn − S‖‖T‖ → 0 (4.4)

as n→∞. So this product is continuous in the topology on B(V ). This is the
prototypical example of a Banach algebra.

Recall that an algebra (A,+, ·, ◦,F) over a field F is a vector space (A,+, ·,F)
over F, along with a product ◦ : V → V on the vector space which is associative:

a ◦ (b ◦ c) = (a ◦ b) ◦ c,

left distributive:
a ◦ (b+ c) = a ◦ b+ a ◦ c,

right distributive:
(a+ b) ◦ c = a ◦ c+ b ◦ c,

and commutes with scalar multiplication:

λ · (a ◦ b) = (λ · a) ◦ b = a ◦ (λ · b).

If there is a multiplictive identity e, we say that the algebra is unital, and if the
multiplication is commutative, we say that the algebra is commutative. We will
typically omit the multiplication symbols · and ◦.

An involution ∗ : A → A on an algebra A over C is a conjugate linear,
antimultiplicative map a 7→ a∗, ie.

(λa+ b)∗ = λa∗ + b∗

and
(ab)∗ = b∗a∗.

If A is unital, we insist that e∗ = e.

April 26, 2006 Version 0.8



4.7. Banach Algebras 191

Definition 4.7.1
A topological algebra is an algebra which is a topological vector space, and for
which the multiplication is continuous.

A Banach algebra is an algebra together with a norm which makes it a
Banach space, and for which

‖a ◦ b‖ ≤ ‖a‖‖b‖.

A C*-algebra is a Banach algebra together with an involution ∗, which is
isometric, so

‖a∗‖ = ‖a‖,

and satisfies the C* identity

‖a∗a‖ = ‖a‖2.

So every C*-algebra is a Banach algebra, and every Banach algebra is a
topological algebra. As we have seen, B(V ) is a Banach algebra, but there are
other interesting examples.

Example 4.7.1
The Banach space Cb(X) of bounded, continuous functions with the uniform

norm is a unital algebra with the usual multiplication of functions. Furthermore,

‖fg‖u ≤ ‖f‖u‖g‖u,

so this is in fact a Banach algebra. Moreover if we define f∗(x) = f(x), then

‖f∗‖u = ‖f‖u,

and since f∗(x)f(x) = |f(x)|2,

‖f∗f‖u = sup
x∈X

‖f(x)‖2 = ‖f‖2.

So Cb(X) is a C*-algebra. 3

Example 4.7.2
Let G be a finite group, and let C(G) be the finite dimensional vector space

of all formal linear combinations of elements of G, ie. elements of the form

v =
∑
g∈G

vgg,

for vg ∈ C. We give C(G) the norm

‖v‖ =
∑
g∈G

|vg|,
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which makes it a vector space. We define a product, ∗, on this vector space by
extending the group operation to C(G) by letting

v ∗ w =
∑
g∈G

∑
h∈G

vgwhgh.

By replacing h by g−1h′, we see that

v ∗ w =
∑
h′∈G

∑
g∈G

vgwg−1h′

h′,

and so the coefficients are given by the convolution of v and w, and using this
fact one can see that this is a Banach algebra.

We can define an isometric involution ∗ by

v∗ =
∑
g∈G

λgg
−1,

but this does not make C(G) a C*-algebra in general. 3
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Sample Exam Questions

These sample questions are designed to give you an idea of what questions may
be asked on the midterm.

1. State the Monotone Convergence Theorem.

2. State the definition of a Lebesgue measurable function.

3. State the definition of a σ-algebra.

4. If A is a σ-algebra, show that given any countable collection of sets An ∈
A, n = 1, 2, . . ., then

∞⋂
n=1

An ∈ A.

5. Show that if f is a measurable function, then cf is a measurable function.

6. Give an example of a Lebsgue measurable set X which contains no inter-
vals, but for which m(X) = 1/3.

7. Find ∫
[−1,2]

x dm(x),

carefully stating the results you use.

8. Let f be a Riemann integrable function on [a, b]. Prove that∫ b

a

f(x) dx ≤
∫

[a,b]

f dm.

9. Give an example of a sequence of functions fn in L+([0, 1]) which converge
pointwise to 0, does not converge in L1([0, 1],m). Verify that your example
is valid.

10. Give an example of a measure space (X,µ) a sequence of measurable
functions on that space such that fn → f in L1, but fn does not converge
to f pointwise almost everywhere.

11. Let (X,µ) be a finite measure space. Show that if fn is a sequence of
measurable functions, and fn converges to some f ∈ L1(X,µ) uniformly,
then ∫

f dµ = lim
n→∞

∫
fn dµ.

12. If (X,M) is a measurable space, and µ and ν are two measures on that
space, show that µ+ ν is also a measure on that space.
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13. Let α : N → [0,∞) be a bounded function. Show that

µα(A) =
∑
k∈A

α(k)

is a measure on (N,P(N)). Let f : N → C be any function. Express∫
f dµα

as a sum.

14. Let c be the counting measure on the natural numbers, N. Show that
f ∈ L1(N, c) if and only if

∞∑
k=1

|f(k)| <∞.

ie. if and only if f(k) is absolutely convergent as a series.

15. State the Fubini-Tonelli theorem. Let c be the counting measure on N,
and ak,l a double sequence for which

∞∑
k=1

∞∑
l=1

|ak,l| <∞.

Use the Tonelli and Fubini theorems on the function f : N2 → R, where
f(k, l) = ak,l to show that one can swap the order of summation, ie.

∞∑
k=1

∞∑
l=1

ak,l =
∞∑

l=1

∞∑
k=1

ak,l.

(Note: this is using a sledgehammer to crack a walnut, but I’m really
interested in whether you understand how to use Tonelli-Fubini.)

16. Show that if (X, τX) and (Y, τY ) are both topological spaces, that every
continuous function f : X → Y is Borel measurable.
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Appendix A

Notation and Basic
Definitions

This section can be thought of as a “cheat-sheet” providing definitions, nota-
tion and fundamental results that may come up in the course. By its nature,
this must be terse, so you should not be too worried if this seems inordinately
complicated.

In particular, you should be comfortable with the subsections on sets, func-
tions, suprema and infima, sequences and series.

This is a rough draft, which I will likely expand upon if need to standardize
more concepts and notation.

The exercises are designed for you to confirm your understanding of the
subject material.

A.1 Sets

Because we will be discussing “sets of sets” at many points, we will use the
terms family and collection as synonyms for “set” to clarify exposition.

The empty set is denoted ∅. We use the symbols ∩, ∪, ⊂ and ⊃ for intersec-
tion, union, (proper) subset and (proper) superset respectively. The subset and
superset symbols are used strictly: A ⊂ B does not allow the possibility that
A = B. We use ⊆ and ⊇, and write “subset” and “superset”, when we want
to allow the possibility of equality. If A is a subset of some set, we denote the
complement of A in that set by Ac. We also define the difference and symmetric
difference of two sets by:

A \B = {a ∈ A : a /∈ B} = A ∩Bc

A4B = {x ∈ A ∪B : a /∈ A ∩B} = (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A)

If A ∩ B = ∅, we say A and B are disjoint. More generally, we say a family of
sets is disjoint if any pair of sets from the family are disjoint.
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196 Notation and Basic Definitions

If X is any set, we denote the power set of X by P(X). The Cartesian
product of any two sets is the set of pairs:

A×B = {(a, b) : a ∈ A, b ∈ B}.

Exercises

1. If A = {1, 2, 3, 7} and B = {3, 4, 6, 7, 8} find A \ B, B \ A, A4 B, and
A×B.

2. If A and B are disjoint sets, show A \B = A and A4B = A ∪B.

A.1.1 Relations and Functions

A relation R from A to B is a subset of A×B, and we write aRb if (a, b) ∈ R.
A relation for A to A is often said to be a relation on A. A relation on A is:

reflexive if aRa for all a ∈ A;

symmetric if aRb implies bRa for all a, b ∈ A;

antisymmetric if aRb and bRa implies a = b for all a, and b ∈ A;

transitive if aRb and bRc implies aRc for all a, b, c ∈ A.

An equivalence relation is a relation which is reflexive, symmetric and
transitive. A partial order is a relation which is reflexive, antisymmetric and
transitive. A preorder is a relation which is only reflexive and transitive, so
every partial order is a preorder. A linear or total order is a partial order for
which either aRb or bRa for all a, b ∈ A.

If ∼ is an equivalence relation on A, we say that the equivalence class of
a ∈ A is the set

[a] = {b ∈ A : a ∼ b}.

Clearly a ∼ b if and only if [a] = [b]. The quotient of A by ∼, A/ ∼ is the set
of all equivalence classes. A set of elements of A is a set of equivalence class
representatives if every equivalence class as precisely one element in the set.

If / is a preorder on A, then so is ., where a . b iff b / a. If X ⊆ A, and /
is a preorder on A, an element a ∈ A is an upper bound for X if x / a for all
x ∈ X; a is a lower bound if a / x for all x ∈ X. If / is a partial order on A,
and X ⊆ A, an element x ∈ X is a maximal element of X if y ∈ X with x / y
implies y = x and it is a minimal element if y ∈ X with y / x implies x = y.

A preorder / on A is (upwardly) directed if every pair of elements {a, b}
has an upper bound c so that a / c and b / c. A set together with a directed
preorder is called a directed set. Every total order is automatically directed.
A total order on a set A is a well ordering if every non-empty subset has a
minimal element, and we say that A is well ordered by /.

A function f from A to B is a relation such that for every a ∈ A there is
a unique b ∈ B such that afb. We write f : A→ B and f(a) = b or f : a 7→ b.
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A.1. Sets 197

We will use the words map and mapping interchangeably with function. WeNote: we tend to use “function”
when talking about functions
whose codomain is R or C, and
“map” when considering
functions between more general
sets.

call A the domain of f and B the codomain of f . If X ⊆ A, we say that the
image of X under f is the set

f(X) = {f(x) : x ∈ X} ⊆ B.

The range of f is the set f(A). The inverse image of X ⊂ B is the set

f−1(X) = {a ∈ A : f(a) ∈ X}.

Images and inverse images satisfy the following:

f

(⋃
α∈I

Xα

)
=
⋃
α∈I

f(Xα) (A.1)

f−1

(⋃
α∈I

Xα

)
=
⋃
α∈I

f−1(Xα) (A.2)

f−1

(⋂
α∈I

Xα

)
=
⋂
α∈I

f−1(Xα) (A.3)

f−1(Xc) = f−1(X)c (A.4)

A function f : A → B is injective or one-to-one if f(a) = f(b) implies
a = b for all a, b ∈ A; it is surjective or onto if f(A) = B; and it is bijective
if it is both surjective and injective. If f is bijective, then the inverse function
of f is the function f−1 : B → A defined by f−1(b) = a if and only if f(a) = b.
We then have that (f−1)−1 = f and f−1(f(a)) = a. Additionally f−1(X) is
the same set whether you regard it as the inverse image under f or the image
under f−1, justifying the notation.

If ∼ is an equivalence relation on A, we define the quotient map q : A →
A/ ∼ by q(a) = [a].

If X is any set and Y ⊂ X, the characteristic function of Y , is the
function χY : X → {0, 1} defined by

χY (x) =

{
1, x ∈ Y
0, x /∈ Y

.

Exercises

1. If X is any set, show that A ⊆ B is a partial order on P(X). Show that
it is directed. If F is any collection of subsets of X, show that⋃

F∈F
F

is an upper bound for F , and ⋂
F∈F

F
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198 Notation and Basic Definitions

is a lower bound for F . Show that this is not a total ordering except for
the trivial cases |X| = 0 and |X| = 1.

2. Consider the family of intervals F = {[a,∞) : a ∈ R}. Show that A ⊆ B
is a partial order on F .

3. Let X ⊆ Y , and / a partial order on Y . Show that the restriction of / to
X is a partial order on X.

4. Show that N with the usual order is well ordered. Show that R with the
usual order is totally ordered, but not well ordered.

5. Consider the set S of all convergent sequences of real numbers. Show that
the relation (xn)∞n=1 ∼ (yn)∞n=1 iff

lim
n→∞

xn = lim
n→∞

yn

is an equivalence relation.

6. Let S be the set of convergent sequences from the previous Exercise. Show
that the function f : S → R defined by

f((xn)∞n=1) = lim
n→∞

xn

is a surjection.

7. Let S and ∼ be as above. Show that the function g : R → S/ ∼ defined
by

g(x) = [(xn)∞n=1],

where xn = x for all n ∈ N.

8. Verify statements A.1–A.4.

9. If X is any set, and A and B ⊆ X, show that

χA∩B(x) = χA(x)χB(x).

10. If / is a preorder on a set X, show that the relation x ∼ y when x / y and
y / x is an equivalence relation on X.

Show that [x]/ [y] if x/y is a well-defined relation on X/ ∼ and, moreover,
it is a partial order.

A.1.2 Cardinality

We denote the cardinality of a set X by |X|. Two sets X and Y have the same
cardinality if there is a bijection from X to Y . If there is a surjection from X
to Y , then |X| ≥ |Y |; and if there is an injection from X to Y then |X| ≤ |Y |.

The set {1, 2, 3, ..., n} is defined to have cardinality n, and any set with
cardinality n is a finite set. All other sets are infinite sets. The set of all natural
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numbers N, has cardinality ℵ0. Any set with cardinality less than or equal to ℵ0

is called a countable set; and other set is called uncountable. The next biggest
cardinality is ℵ1, and so forth. The set of all real numbers, R has cardinality c,
which may or may not be ℵ1, depending on your model of set theory (I don’t
think we need it in this course, but if we do, we can safely assume that the
cardinality of the continuum is ℵ1).

If X is an infinite set, then |Xn| = |X|. In particular, this means that
|Nn| = |Zm| = |Qk| = ℵ0, and |Rn| = |Cm| = c, for any natural numbers n, m
and k. Explicit bijections can be set up quite easily.

To show that ℵ0 6= c you use Cantor’s diagonal argument, and this argu-
ment can also be used to show that the set of sequences in a countable set is
uncountable.

If X is any set, |X| < |P(X)|. Usually |P(X)| is denoted 2|X|.

Exercises

1. If A and B are finite sets, show that |A×B| = |A||B|.

2. If A and B are finite sets, show that |A ∪B| = |A|+ |B| − |A ∩B|.

3. Show that |Q| = ℵ0.

4. Let SQ be the set of all rational sequences. Use Cantor’s diagonal argument
to show that |SQ| > ℵ0.

A.1.3 Products of Sets and the Axiom of Choice

Earlier we defined A × B = {(a, b) : a ∈ A, b ∈ B}. We can define a finite
product of sets A1, A2, . . . , An in the same way by

n∏
k=1

Ak = A1 ×A2 × · · · ×An = {(a1, a2, . . . , an)|ak ∈ Ak} .

However, for full generality, it is better to consider these n-tuples instead as
functions. The n-tuple a = (a1, a2, . . . , an) ∈ A1 × A2 × · · · × An is equivalent
to the function a : {1, 2, . . . , n} → A1 ∪A2 ∪ . . . An where

a(k) = ak.

On the other hand, any function a : {1, 2, . . . , n} → A1 ∪ A2 ∪ . . . An which
satisfies a(k) ∈ Ak will also give you an n-tuple a = (a(1), a(2), . . . a(n)) ∈
A1 ×A2 × · · · ×An. So we can think of

n∏
k=1

Ak =

{
a : {1, 2, . . . , n} →

n⋃
k=1

Ak|a(k) ∈ Ak

}
.
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Notice that the set {1, 2, . . . , n} is indexing the collection of sets. This allows
us to generalize to any collection of sets. Let {Aα : α ∈ I} be any collection of
sets indexed by an index set I. Then

∏
αinI

Aα =

{
a : I →

⋃
α∈I

Aα|a(α) ∈ Aα

}
.

In the common case where Aα = A for all αinI, we will write

A|I| =
∏
αinI

A.

In particular A×A×A× . . .×A = An.
The axiom of choice states that if Aα 6= ∅ for all αinI, then∏

αinI

Aα 6= ∅.

The reason that this is called the axiom of choice is because it has the immediate
corollary that given an arbitrary disjoint collection of non-empty sets Aα for
α ∈ I, we can find a set

B ⊆
⋃
α∈I

Aα

so that B ∩Aα has exactly one element. In other words, we can choose exactly
one element from each of an arbitrary collection of sets.

The axiom of choice is equivalent to a number of different statements. The
most useful is Zorn’s Lemma:

Theorem A.1.1 (Zorn’s Lemma)
If X is a partially ordered set, and every totally ordered subset of X has an
upper bound, then X has a maximal element.

Some other equivalent statements are:

Theorem A.1.2 (Hausdorff Maximal Principle)
Every partially ordered set has a maximal linearly ordered set.

Theorem A.1.3 (Well Ordering Principle)
For every set X there exists a total order which is a well ordering of X.

Although the Axiom of Choice and its equivalents can be very powerful, it is
considered preferable to avoid their use if possible, as any proof which requires
their use is neccesarily non-constructive.
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Exercises

1. Show that a function f : R → R can be regarded as an element of∏
αinR

R = R|R|.

2. Show that the Axiom of Choice, Zorn’s Lemma, the Hausdorff Maximal
Principle and the Well Ordering Principle are all equivalent.

A.2 Algebraic Systems

We have the usual number systems:

Natural Numbers: N = {1, 2, 3, . . .}.

Integers: Z = {. . .− 2,−1, 0, 1, 2, . . .}.

Rational Numbers: Q =
{

p
q : p ∈ Z, q ∈ N, gcd(p, q) = 1

}
.

Real Numbers: R = the (Cauchy) completion of Q.

Complex Numbers: C = {x+ iy : x, y ∈ R, i2 = −1}.

There is the obvious chain of inclusions N ⊆ Z ⊆ Q ⊆ R ⊆ C, which we will use
without comment.

The sets N, Z, Q and R are totally ordered by ≤. C is partially ordered by
the relation a ≤ b iff a− b ∈ R and a− b ≤ 0. These orders are compatible with
the standard inclusions of these sets.

It will often be useful to work with infinite quantities. The extended real
numbers, R] is the set of real numbers with positive and negative points at
infinity added.

R] = R ∪ {±∞}.

We assume that −∞ < a < +∞, that a +∞ = ∞ and that a −∞ = −∞ for
each a ∈ R. Also a · ∞ is +∞, 0 and −∞, and a · −∞ is −∞, 0 and +∞, for
a > 0, a = 0 and a < 0 respectively. ∞−∞ is undefined. Clearly R ⊂ R], and
we will use this inclusion without comment.

A.2.1 Binary Operations and Groups

An binary operation • on a set X is a function • : X × X → X. We will
usually write x • y for •(x, y). A binary operation • is:

associative if x • (y • z) = (x • y) • z for all x, y, z ∈ X;

commutative if x • y = y • x for all x, y ∈ X.
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An element e ∈ X is a (two-sided) identity for • if x • e = x = e • x; and an
element y is a (two-sided) inverse for x if x • y = e = y • x.

If A and B are subsets of X, and x ∈ X, we define

A •B = {a • b : a ∈ A, b ∈ B}
x •A = {x} •A = {x • a : a ∈ A}
A • x = A • {x} = {a • x : a ∈ A}.

A set with an associative binary operation is a semigroup, if it also has an
identity, it is a monoid.

A group G = (G, •, e) is a set G together with an associative binary oper-
ation • on G and an identity e ∈ G for • such that every element g ∈ G has a
unique inverse, usually denoted g−1. If • is also commutative, we say that G
is abelian, and we often suggestively use + for the operation, 0 for the iden-
tity and −g for the inverse. In groups where the operation is meant to suggest
multiplication, we will often simply write xy for x • y, and 1 for the identity.

If A is a subset of G, we define

A−1 = {a−1 : a ∈ A}.

If we are using additive notation, we write −A instead, and A−B for A+(−B).
If G1 and G2 are groups, a function ϕ : G1 → G2 is a (group) homomor-

phism if ϕ(x • y) = ϕ(x) • ϕ(y) and ϕ(x−1) = ϕ(x)−1 for all x and y ∈ G1.
This implies that ϕ(e1) = e2. You can combine both conditions into the one
check that ϕ(x • y−1) = ϕ(x) • ϕ(y)−1.

Exercises

1. Show that (N,+) is a semigroup, that (N ∪ {0},+, 0) is a monoid, and
that (Z,+, 0) is a group.

2. Let X be a set and F be the set of bijections f : X → X. Show that
(F, ◦, id) is a group, where ◦ is composition of functions and id(x) = x.

A.2.2 Rings, Fields, Vector Spaces, Algebras

A ring K = (R,+, ·, 0) is a set R with two binary operations + and · on R, such
that (R,+, 0) is an abelian group, and (R, ·) is a semigroup; x · 0 = 0 = 0 · x;
and · is left- and right- distributive for +:

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z

for all x, y and z ∈ R.
A ring is unital if there is a multiplicative identity, 1 ∈ R, which makes

(R, ·, 1) a unital semigroup, and a ring is abelian if the multiplication is abelian.
A field F = (F,+, ·, 0, 1) is a unital abelian ring such that (F \0, ·, 1) is a group.

A vector space over a field F = (F,+, ·, 0, 1) is a tuple (V,+, ·, 0), where
(V,+, 0) is an additive group and · : F × V → V is a scalar multiplication
such that
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• · is associative: α(βv) = (αβ)v.

• 1 is a left identity for ·: 1v = v.

• · is right distributive for +: (α+ β)v = αv + βv.

• · is left distributive for +: α(v + w) = αv + αw.

Note that we are deliberately using the same notation for the addition operation
on the field and the group, even though these are distinct operations; the oper-
ation required can be deduced by context. Similarly, we use the same notation
for the multiplication operation on the field and the scalar multiplication, even
though these are distinct operations.

If V1 and V2 are vector spaces over the same field F, a map ϕ : V1 → V2 is
linear if

ϕ(u+ v) = ϕ(u) + ϕ(v) and ϕ(λ · v) = λ · ϕ(v)

for all u and v ∈ V1 and λ ∈ F. It is often most convenient to combine these
two checks into the one check that

ϕ(u+ λ · v) = ϕ(u) + λ · ϕ(v).

It is automatic that ϕ(0) = 0 for a linear map.
If we are considering a vector space over C, we will say that a map is anti-

linear if

ϕ(u+ v) = ϕ(u) + ϕ(v) and ϕ(λ · v) = λ · ϕ(v)

for all u and v ∈ V1 and λ ∈ C. Again, it is not hard to see that ϕ(0) = 0 for
an antilinear map.

An algebra over a field F is a tuple (A,+, ·, ?, 0) where (A,+, ·, 0) is a vector
space over F, (A,+, ?, 0) is a ring, and the scalar product · commutes with the
algebra product ?:

α · (a ? b) = (α · a) ? b = a ? (α · b).

As is the case f If there is a multiplicative identity 1 for the ring, we say that
the algebra is unital. If the ring is commutative, we say that the algebra is
commutative.

Exercises

1. Let Mn(F) be the set of n by n matrices with entries in a field F. Show
that (Mn,+, ·, 0) is a unital ring, where · is matrix multiplication, 0 is the
zero matrix, and the identity matrix is the multiplicative unit.

Show that Mn(F) is a unital algebra over F.

2. Show that the integers modulo p, where p is a prime number, form a field.
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3. Let X be any set, and let R(X) be the set of all functions f : X → R.
Show that (R(X),+, ·, 0) is a vector space over R, where +, · are the usual
addition and scalar multiplication of functions, and 0 is the zero function
0(x) = 0.

4. Let R(X) be as in the previous exercise. Show that R(X) is a unital ring.

Show that R(X) is a commutative unital algebra over R.

5. Let V , W be vector spaces over a field F. Let L(V,W ) be the set of linear
maps from V to W . Show that L(V,W ) is a vector space over F.

6. Show that if V is a vector space over F, and L(V ) = L(V, V ), then L(V )
is a unital ring where the product is composition of linear operators:

(ST )(v) = S(T (v))

for all v ∈ V , S, T ∈ L(V ), and the multiplicative identity is the identity
map.

Show that L(V ) is in fact an algebra over F.

A.3 Real- and Complex-valued Functions

If X is a set, we will often want to consider functions f : X → R or f : X → C.
We will denote these sets of functions by R(X) and C(X) respectively.

The set of all such functions is a vector space where the functions λf and
f + g are defined in the usual way:

(λf)(x) = λf(x) and (f + g)(x) = f(x) + g(x)

where λ is a scalar and f and g are functions. In fact, this space is also an
algebra, where the product fg of two functions f and g, is given by

(fg)(x) = f(x)g(x)

as usual. We can divide one function by another if the denominator is never
zero: (

f

g

)
(x) =

f(x)
g(x)

,

where g(x) 6= 0 for all x ∈ X.
We say that f ≤ g if f(x) ≤ g(x) for all x ∈ X. This is a partial order

on these functions. Such a function is positive if f ≥ 0. We denote the
positive functions by R(X)+ and C(X)+. More generally, if A is any collection
of functions on X, the positive functions in A are denoted by A+.

We can also define a function |f | which is the absolute value function of f
by

|f |(x) = |f(x)|.
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Clearly |f | is positive and f ≤ |f |.
For complex valued functions, we can also define the complex conjugate

function f or f∗ by
f(x) = f(x),

as well as the real and imaginary parts of a function

(Re f)(x) = Re(f(x)) (Im f)(x) = Im(f(x)).

Note that Re f and Im f are real-valued. As you might expect f = Re f+i Im f ,
f = Re f − i Im f and |f | =

√
(Re f)2 + (Im f)2.

Exercises

1. Show that for any function f : X → C, that f = Re f + i Im f , f =
Re f − i Im f and |f | =

√
(Re f)2 + (Im f)2.

2. Show that the map f 7→ f is an antilinear map on C(X).

A.4 Suprema and Infima

If / is a partial order on a set A, and X ⊆ A, then the supremum of X, if it
exists, is the least upper bound of X, ie. a is the supremum of X iff a is an
upper bound for X, and if b is any other upper bound, then a / b. Similarly,
the infimum of X is the greatest lower bound. The supremum is usually
denoted

supX

and the infimum by
infX.

In general, there is no guarantee that such elements exist. A set is order
complete if every bounded set has a supremum and infimum.

We usually work with R or R] ordered by ≤, and in this case we say sup ∅ =
−∞; inf ∅ = +∞; if A has no upper bound, then supA = +∞; and if A has no
lower bound, then inf A = −∞. Both R and R] are order complete.

For any set A ⊆ R, we automatically have

inf A ≤ supA
sup−A = − inf A.

If A ⊆ B ⊆ R,

supA ≤ supB
inf A ≥ inf B.

Given non-empty subsets A and B of R,

sup(A+B) = supA+ supB
inf(A+B) = inf A+ inf B.
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and if A and B are subsets of [0,+∞), we also have that

supAB = (supA)(supB)
inf AB = (inf A)(inf B).

Exercises

1. Verify the claims made in this section.

A.4.1 Suprema, Infima and Real-Valued Functions

If X is an arbitrary set, and f : X → R is a function, we will sometimes use the
alternative notation

sup
x∈X

f(x) = sup{f(x) : x ∈ X}

inf
x∈X

f(x) = inf{f(x) : x ∈ X}.

Given functions f and g : X → R,

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}
inf{f(x) + g(x) : x ∈ X} ≥ inf{f(x) : x ∈ X}+ inf{g(x) : x ∈ X}.

If f ≤ g, we have

sup{f(x) : x ∈ X} ≤ sup{g(x) : x ∈ X}
inf{f(x) : x ∈ X} ≤ inf{g(x) : x ∈ X}.

If f ≥ 0 and g ≥ 0, then

sup{f(x)g(x) : x ∈ X} ≤ (sup{f(x) : x ∈ X})(sup{g(x) : x ∈ X})
inf{f(x)g(x) : x ∈ X} ≥ (inf{f(x) : x ∈ X})(inf{g(x) : x ∈ X}).

We define the uniform norm of a function f : X → R or C by

‖f‖∞ = sup
x∈X

|f(x)|.

The above facts allow us to conclude that

‖λf‖∞ = |λ|‖f‖∞,
‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞, and

‖fg‖∞ ≤ ‖f‖∞‖g‖∞

for all scalars λ and functions f and g. Additionally, if 0 ≤ f ≤ g,

‖f‖∞ ≤ ‖g‖∞.
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Given a family of real-valued functions F , we define a function
∨

f∈F f by∨
f∈F

f

 (x) = sup{f(x) : f ∈ F},

and a function
∧

f∈F f by∧
f∈F

f

 (x) = inf{f(x) : f ∈ F}.

For pairs of functions we write f ∨ g and f ∧ g for these functions respectively.

Exercises

1. Verify that

‖λf‖∞ = |λ|‖f‖∞,
‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞, and

‖fg‖∞ ≤ ‖f‖∞‖g‖∞

for all scalars λ and functions f and g.

2. Show that ∥∥∥∥∥∥
∨

f∈F

f

∥∥∥∥∥∥
∞

= sup{‖f‖∞|f ∈ F}

and ∥∥∥∥∥∥
∧

f∈F

f

∥∥∥∥∥∥
∞

= inf{‖f‖∞|f ∈ F}.

3. Let f : X → R, and assume that there is some ε > 0 such that |f(x)| > ε
for all x ∈ X (ie. f is bounded away from 0). Show that ‖1/f‖∞ < 1/ε.

A.5 Sequences

A sequence (xn)∞n=1 in a set X is a function

x : N → X : n 7→ xn.

A property holds eventually for a sequence if there is some n0 ∈ N such that
the property holds for all xn with n ≥ n0. A property holds frequently if for
every n ∈ N there is some m ≥ n so that the property holds for xm.
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A sequence (an)∞n=1 in R or C converges to a if the sequence is eventually
in any neighbourhood of a. More concretely, for every ε > 0, there exists an n0

such that
|an − a| < ε for all n ≥ n0.

We write “an → a as n→∞”, or

lim
n→∞

an = a.

For real numbers, we say that an → +∞ if an is eventually in any set of the form
(M,+∞], and an → −∞ if an is eventually in any set of the form [−∞,M).

A sequence (fn)∞n=1 of real- or complex-valued functions on a setX converges
pointwise to a function f if for each x ∈ X, fn(x) → f(x) as n → ∞. The
sequence converges uniformly to f if for all ε > 0,

‖fn(x)− f(x)‖∞ < ε

eventually. Any uniformly convergent sequence is automatically pointwise con-
vergent.

Exercises

1. Use the definition of the limit of a sequence to prove that 1/n2 → 0 as
n→∞.

2. Consider the sequence sinnπ/4. For which x ∈ R is | sinnπ/4 − x| < ε
frequently.

3. Let a, b ∈ R, and let 0 < ε < |a − b|/2. Show that a sequence (xn)∞n=1

cannot converge if both

|xn − a| < ε and |xn − b| < ε

are frequently true.

4. Show that if fn → f uniformly, then fn → f pointwise. Provide an
example that shows the converse doews not hold.

A.5.1 Evaluating Limits

Most of the following should be familiar from calculus or undergraduate real
analysis.

Theorem A.5.1 (Sandwich (or Squeeze) Theorem)
If an, bn and cn are sequences of real numbers such that eventually an ≤ bn ≤ cn
and

lim
n→∞

an = lim
n→∞

cn = L,

then bn converges to L.
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A sequence of real numbers is monotone increasing on a set if xm ≥ xn

for all m ≥ n with m, n in the set; it is monotone decreasing on a set if
xm ≥ xn for all m ≥ n, with m, n in the set; it is bounded above on a set if
there is some M with xn ≤ M for all n in the set, and bounded below on a
set if there is some M with xn ≥M for all n in the set.

Theorem A.5.2 (Monotone Sequence Theorem)
If an is a sequence which is eventually monotone increasing, then it is either
eventually bounded above, in which case it converges to some a ≤ M , or it is
not, in which case it converges to +∞.

If an is a sequence which is eventually monotone decreasing, then it is either
eventually bounded below, in which case it converges to some a ≥ M , or it is
not, in which case it converges to −∞.

The Sandwich and Monotone Sequence theorems can be applied to pointwise
limits of real-valued functions as well, remembering that f ≤ g iff f(x) ≤ g(x)
for all x.

For sequences of real or complex numbers, or real- or complex- valued func-
tions (for either type of convergence), if an → a and bn → b as n → ∞, then
an + bn → a+ b, an − bn → a− b, and anbn → ab. Also an/bn → a/b, provided
b 6= 0 (for numbers); or b(x) 6= 0 for all x for functions.

Theorem A.5.3 (Cancellation Theorem)
If an, bn and cn are sequences of real or complex numbers, with bn and cn 6= 0,
and an/bn converges, then

lim
n→∞

ancn
bncn

= lim
n→∞

an

bn

The following concrete limits are sometimes useful to know:

c→ c for any number c
np → +∞ for p > 0
1
np

→ 0 for p > 0

n sin
1
n
→ 1

n(1− cos
1
n

) → 0

For complex numbers, if zn = an + ibn, then zn → z = a + ib as n → ∞ if
and only if an → a and bn → b as n→∞.

A sequence (xn)∞n=1 is Cauchy if for every ε > 0, |xn − xm| < ε eventually.
ie. there is some n0 such that |xn − xm| < ε for all n and m greater than n0.
Every Cauchy sequence in R or C converges.

The following theorem is less well-known, but can be invaluable for finding
limits:
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Theorem A.5.4
If a sequence an has the property that every subsequence ank

has a sub-sub-
sequence ankl

which converges to a, then an converges to a.

This theorem in fact holds no matter what sort of sequence we are consid-
ering.

Exercises

1. Prove that sin n
n → 0 as n→∞.

2. Show that every convergent sequence in R is a Cauchy sequence.

3. We say that a sequence (fn)∞n=1 of functions fn : X → R is uniformly
Cauchy if for every ε > 0, ‖fn − fm‖∞ < ε everntually. Show that every
uniformly convergent sequence of functions is uniformly Cauchy.

4. Show that every uniformly Cauchy sequence of functions is uniformly con-
vergent.

A.5.2 Limit Supremum and Limit Infimum of Sequences

Even if a sequence of real numbers does not converge, we can still extract some
information from it. The limit supremum of a sequence an, is the limit of the
sequence xk = sup{an : n ≥ k}, or more concisely,

lim sup
n→∞

an = lim
k→∞

sup{an : n ≥ k}.

This sequence either converges to a number or −∞, since it is decreasing.
Similarly, the limit infimum is the limit of the infimum of the tail of the

sequence,
lim inf
n→∞

an = lim
k→∞

inf{an : n ≥ k}.

Clearly,
lim sup

n→∞
an ≥ lim inf

n→∞
an,

and you get equality iff the sequence converges, in which case the limit supremum
and the limit infimum are both equal to the limit.

For sequences of real-valued functions, we define the limit supremum function

f = lim sup
n→∞

fn

by
f(x) = lim sup

n→∞
fn(x).

The limit infimum function is analogously defined. These functions may take
values in the extended reals.
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Once again
lim sup

n→∞
fn ≥ lim inf

n→∞
fn

and we have equality iff fn converges pointwise, and in this case the limit func-
tion is equal to the limit supremum and limit infimum functions.

A.5.3 Topology of R
A subset UofR is open if given any x ∈ U there is a ε > 0 such that if |x−y| < ε
then y ∈ U . Equivalently, U can be written as a union of open intervals. A
subset of R is closed if its complement is open. The empty set and R are
considered to be both open and closed.

Arbitrary unions of open sets are open, and finite intersections of open sets
are open. Arbitrary intersections of closed sets are closed, and finite unions of
closed sets are closed.

Closed sets are also characterised by the property that the limit points of
any sequence contained in the set are also contained in the set.

A set is compact if it is closed and bounded. Equivalently, it is compact if
every open cover of the set has a finite subcover.

Exercises

1. Find lim sup n+1
n .

2. Let fn(x) = n−x2

n . Find lim sup fn.

3. Let fn be any sequence of functions fn : X → R. Show that∥∥∥∥lim sup
n→∞

fn

∥∥∥∥
∞

= lim sup
n→∞

‖fn‖.

A.6 Series

A series
∞∑

n=1

xn

is a sequence (xn)∞n=1 in an additive group (X,+, 0), regarded as an infinite
sum,

∞∑
n=1

xn = x1 + x2 + x3 + . . .

We say that a series of real or complex numbers converges if the sequence

sn =
n∑

k=1

xn
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of partial sums converges. Similarly, if we have a series of real- or complex-
valued functions, we say that the series converges pointwise (respectively
uniformly) if the sequence of partial sums converges pointwise (respectively
uniformly).

The limit of the sequence of partial sums is the limit of the series, and if
sn → x as n→∞, we write

∞∑
n=1

xn = x.

A series of numbers or functions is absolutely convergent in the appro-
priate sense if the series

∞∑
n=1

|xn|

converges. All absolutely convergent series converge. A series which converges,
but does not converge absolutely, is conditionally convergent. Absolutely
convergent series have the important property that the limit of the series does
not depend on the order of summation: for all bijections ι : N → N,

∞∑
n=1

xn =
∞∑

n=1

xι(n)

iff the series converges absolutely.
The geometric series

∞∑
n=1

arn−1 =
a

1− r

converges absolutely for |r| < 1 and diverges otherwise.
The harmonic series

∞∑
n=1

1
n

diverges, but the alternating harmonic series

∞∑
n=1

(−1)n

n
= ln 2

converges.
In general, if you need to evaluate a series, you want to either relate it to a

power series (see below), hope that it is a telescoping series, or try to explicitly
find the partial sums and take a limit.

A.6.1 Series Convergence Tests

Given a sequence of non-negative numbers, we have the following tests for con-
vergence:
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Theorem A.6.1 (Divergence Test)
If lim an 6= 0, then

∑∞
n=1 an diverges.

Theorem A.6.2 (Comparison Test)
If an ≥ bn ≥ 0 eventually, then if

∑∞
n=1 an converges, so does

∑∞
n=1 bn. On the

other hand, if
∑∞

n=1 bn diverges,
∑∞

n=1 an also diverges.

Theorem A.6.3 (Integral Comparison Test)
If an ≥ 0 and there is a continuous, positive, decreasing function f : [N,∞)
such that an = f(n) eventually, then if the improper Riemann integral∫ ∞

N

f(x) dx converges

so does
∑∞

n=1 an. On the other hand, if the improper Riemann integral∫ ∞

N

f(x) dx diverges

so does
∑∞

n=1 an.

See Section A.7.3 below for the definitions of improper integrals.

Theorem A.6.4 (Limit Comparison Test)
If an ≥ 0 and bn ≥ 0, then if

lim sup
an

bn
<∞

and
∑∞

n=1 bn converges, then
∑∞

n=1 an converges. On the other hand, if

lim inf
an

bn
> 0

and
∑∞

n=1 bn diverges, then
∑∞

n=1 an diverges.

The limit comparison test can be used with limits instead of limit infima
and limit suprema, but this way of stating things is more general.

Theorem A.6.5 (Alternating Series Test)
If an = ±(−1)nbn eventually, where bn ≥ 0, bn+1 ≤ bn, and limn→∞ bn = 0,
then

∑∞
n=1 an converges.

Theorem A.6.6 (Ratio Test)
Given a series

∑∞
n=1 an, let

L = lim sup
∣∣∣∣ an

an+1

∣∣∣∣ .
If L < 1, then the series converges absolutely. If L > 1, the series diverges.
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Theorem A.6.7 (Root Test)
Given a series

∑∞
n=1 an, let

L = lim sup n
√
|an|.

If L < 1, then the series converges absolutely. If L > 1, the series diverges.

In both the root and ratio tests, if L = 1, the series may converge absolutely,
converge conditionally, or diverge.

A.7 Functions on R
In this section we consider functions f : D → R where D ⊆ R. Much of this
section is equally valid when considering functions f : D → C, where D ⊆ R.

We say that the limit of f as x goes to a is L, and write f(x) → L as x→ a,
or

L = lim
x→a

f(x),

if given any sequence xn → a in D, we have

L = lim
n→∞

f(xn).

Equivalently, given any ε > 0, there is a δ > 0 such that |f(x) − L| < ε for all
x ∈ D with |x− a| < δ.

If there is no such L, we say the limit does not exist.
These limits observe the same rules as limits of sequences.
A function f : D → R is continuous at a ∈ D if

lim
x→a

f(x) = f(a).

Equivalently, f is continuous at a if for every ε > 0 there is a δ > 0 such that
|f(x)− f(a)| < ε for all x ∈ D with |x− a| < δ.

A function is continuous on X ⊆ D if it is continuous at every x ∈ X.
A function is continuous if it is continuous on its domain. Equivalently,

a function f : D → R is continuous if for any open set U ⊆ R we have that
f−1(U) is relatively open in D. In fact it is sufficient that this hold for open
intervals.

A function f : D → R is uniformly continuous if for every a ∈ D and
ε > 0 there is a δ > 0 such that |f(x)− f(a)| < ε for all x ∈ D with |x− a| < δ.
Not that this definition differs from the definition of continuity in that the value
of δ does not depend on the point a.

A.7.1 Differentiation

A function is differentiable at a ∈ D if the limit

lim
x→a

f(x)− f(a)
x− a
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exists and is finite. In this case we say

f ′(a) = lim
x→a

f(x)− f(a)
x− a

= lim
h→0

f(a+ h)− f(a)
h

.

A function which is differentiable at a must be continuous at a.
A function is differentiable on X ⊆ D if it is differentiable at every point

x ∈ X. A function is differentiable if it is differentiable on its domain. The
notation Df and df

dx are often used for f ′. Higher derivatives can be denoted
by f ′′, f ′′′, f (n); Dnf ; or dnf

dxn as usual.
If f (n) exists and is continuous onD, we say that f is n-times continuously

differentiable, and write f ∈ Cn(D). If f (n) exists for every n, we say that f
is infinitely differentiable, and write f ∈ C∞(D).

Amongst other facts, we know that differentiation is linear:

D(λf) = λDf and D(f + g) = Df +Dg

for all λ ∈ R, and f , g differentiable.
We say that a function F : D → R is an antiderivative of f , if DF = f . We

denote the set of all antiderivatives of a function f by the indefinite integral∫
f(x) dx = {F : D → R|DF = f}.

If D is an interval, f is continuous, and F is any one antiderivative, then every
antiderivative is of the form F (x)+C for some constant C, and we traditionally
write ∫

f(x) dx = F (x) + C

where C is the constant of integration and is assumed to take every possible
real value.

A.7.2 Riemann Integration

A partition P of an interval I = [a, b] is a collection of points a = x0 < x1 <
x2 < . . . < xn−1 < xn = b. The norm or mesh, ‖P‖ of P is

‖P‖ = max
k
{xk − xk−1}.

A partition P1 is a refinement of P2, denoted P1 ⊆ P2, if every point in P1 is
also in P2. If P1 ⊆ P2, then |P1| ≥ |P2|. If P1 and P2 are two partitions, then
there is a partition P1 ∪ P2 containing the points in both partitions, which is a
refinement of both P1 and P2.

If f is a real-valued function on an interval I = [a, b], and P is a partition
of I, then we define

U(f,P) =
n∑

k=1

( sup
x∈[xk−1,xk]

f(x))(xk − xk−1)
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to be the upper sum of f over P, and

L(f,P) =
n∑

k=1

( inf
x∈[xk−1,xk]

f(x))(xk − xk−1)

to be the lower sum. It is not hard to see that

L(f,P1) ≤ U(f,P2)

for any two partitions. We let

U(f, I) = inf{U(f,P) : P a partition of I}

and
L(f, I) = sup{L(f,P) : P a partition of I}.

If U(f, I) = L(f, I), then we say that f is Riemann integrable and it has
Riemann integral ∫ b

a

f(x) dx = U(f, I) = L(f, I).

We denote the set of Riemann integrable functions on I by R(I) or R[a, b].
Every continuous function on I is Riemann integrable.

We know that Riemann integration is linear:∫ b

a

λf(x) dx = λ

∫ b

a

f(x) dx

and ∫ b

a

f(x) + g(x) dx =
∫ b

a

f(x) dx+
∫ b

a

g(x) dx

for all λ ∈ R and f , g ∈ R(I). It is also order-preserving: if f ≤ g and f ,
g ∈ R(I), then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Also if c ∈ [a, b], ∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.

The fundamental theorem of calculus tells us that if f is continuous on [a, b],
the function

F (x) =
∫ x

a

f(x) dx

is an antiderivative of f . It also says that if F is any antiderivative of a contin-
uous function f on [a, b], then∫ b

a

f(x) dx = F (b)− F (a).
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A.7.3 Improper Integrals

If D = [a,∞), and f : D → R is in R([a, t]) for every t ∈ D, we define∫ ∞

a

f(x) dx = lim
t→∞

∫ t

a

f(x) dx,

provided the limit exists. We define∫ b

−∞
f(x) dx

analogously.
If D = [a, b), and and f : D → R is in R([a, t]) for every t ∈ D, we define∫ ∞

a

f(x) dx = lim
t→b

∫ t

a

f(x) dx,

provided the limit exists. We define an integral on (a, b] analogously.
For open intervals, we define the integral of a function over that interval by

splitting it into half-open subintervals. We can define the integral of a function
f with a finite number of discontinuities in an interval I by splitting I into
half-open subintervals where f is continuous and using improper integration.

A.7.4 Complex-valued Functions on R
We briefly note here that we can easily define, continuity, derivatives and inte-
gration for functions f : D → C, where D ⊆ R with the above definitions. In
these cases one can show that:

lim
x→a

f(x) = lim
x→a

Re f(x) + i lim
x→a

Im f(x),

Df = D(Re f) + iD(Im f),∫ b

a

f(x) dx =
∫ b

a

Re f(x) dx+ i

∫ b

a

Im f(x) dx.

In other words, one can simply use the corresponding operations on the real and
imaginary parts of f . Differentiation and integration are then complex-linear
maps, and the usual rules of integration and differentiation still apply.

For those of you who have seen some complex function theory, it is worth
stressing that we are not dealing with functions defined on general subsets of C,
only subsets of R, so we are not concerned with things like the Cauchy condition.

A.8 Series of Functions

Certain series of functions have some significance.
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A.8.1 Power Series

A power series is a series of the form

∞∑
n=0

cn(x− a)n,

where cn and a are constants, and x is regarded as a variable. Each power series
has a radius of convergence R ∈ [0,∞] such that the series converges in the
open ball {x : |x− a| < R} and diverges on the set {x : |x− a| > R}.

A power series defines an infinitely differentiable function on its interval of
convergence by

f(x) =
∞∑

n=0

cn(x− a)n.

Such a function can be differentiated and integrated term-by-term, so that

f ′(x) =
∞∑

n=0

(n+ 1)cn+1(x− a)n

and ∫
f(x) dx = C +

∞∑
n=1

cn−1

n
(x− a)n,

where C is the constant of integration. These functions have the same radius of
convergence, but may have different convergence properties at the end-points of
the interval of convergence.

Some important functions, such as the Gamma, Error, Bessel and Airy func-
tions, are only given their power series.

Given a function f which is infinitely differentiable on some interval I, we
define the Taylor series of f about a ∈ I to be the power series

∞∑
n=0

f (n)(a)
n!

(x− a)n.

If a = 0, then this is a Maclaurin series. A function is analytic at a if it is
equal to its Taylor series about a inside the region of convergence.

Not every infinitely differentiable function is analytic, the function

f(x) =

{
0 x ≤ 0,
e−1/x2

x > 0,

being the classic counterexample. The Maclaurin series of this function is 0,
and has an infinite radius of convergence, but clearly the function is not 0.
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The following series are worth while knowing:

1
1− x

=
∞∑

n=0

xn R = 1

ex =
∞∑

n=0

1
n!
xn R = ∞

sinx =
∞∑

n=0

(−1)n

(2n+ 1)!
x2n+1 R = ∞

cosx =
∞∑

n=0

(−1)n

(2n)!
x2n R = ∞

More examples can be derived by integration, differentiation, and substitution
of polynomials. These concrete power series can sometimes be used to evaluate
particular series by substituting particular values for x.

A.8.2 Fourier Series

A trigonometric polynomial is a finite sum of the form

f(x) = a0 +
n∑

k=1

(ak cos kx+ bk sin kx),

where ak, bk are constants. A Fourier series is a series of the form

a0 +
∞∑

k=1

(ak cos kx+ bk sin kx)

where ak, bk are constants. Given a function f defined on all of R which is
periodic of period 2π (or simply a function defined on (−π, π]), we define the
Fourier coefficients of f to be

ak =
1
2π

∫ π

−π

f(x) cos kx dx

and
bk =

1
2π

∫ π

−π

f(x) sin kx dx.

By using basic trig integrals, one can show that if f is an infinitely differentiable
function given by a convergent Fourier series, then the Fourier coefficients cor-
respond to the coefficients of the Fourier series.

With a little basic knowledge of complex analysis, specifically that eix =
cosx + i sinx, one can simplify the above by considering complex-valued func-
tions. We use (complex) trigonometric polynomials of the form

f(x) =
n∑

k=−n

cke
ikx,
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where ck are (possibly complex) constants. In this case, if f : R → C is periodic
with period 2π, the (complex) Fourier coefficients are defined by

ck =
1
2π

∫ π

−π

f(x)e−ikx dx.

Again, if f is an infinitely differentiable function given by a Fourier series, then
the Fourier coefficients correspond to the coefficients of the series.

Note that some sources use different periodicities and constants, but the
underlying idea is the same.
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Appendix B

Strategies

There are some standard “tricks” which you may notice are repeatedly used in
real analysis proofs. Of course, you will still find the usual proof tricks, such as
arguments by contrapositive and contradiction useful.

Some of the concepts and situations given below won’t make sense initially,
as we won’t have discussed the underlying theory until later in the course, but
hopefully by the end of the course this should all make sense.

B.1 Extending from a Subset

Often you want to prove that a given condition holds for everything in a certain
set, such as a given class of functions, or all points in a topological space. In
many cases, you can prove the result fairly easily for certain simple cases, and
you can often extend the result using one or more of these tricks:

1. If you are in a topological space, prove the result for a dense subset, and
try to extend it to all cases by taking appropriate limits. This requires
you to know or prove that the simple case is in fact dense; and it requires
that the condition you are proving behaves “nicely” when you take limits
(and you have to be careful checking this, as it is easy to slip up).

For example, when proving facts about positive measurable functions,
we commonly start with simple functions, and take limits. However we
need key theorems, such as the Dominated Convergence Theorem and the
Monotone Convergence Theorem to be able to get properties to transfer
under limits.

Good candidates for dense sets include: the rational, algebraic, and di-
adic (or more generally p-adic) numbers; simple functions; continuous
functions; polynomials; analytic functions (ie. functions given by power
series); differentiable functions; “smooth” functions; rational-valued vec-
tors or functions; etc.
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2. If you are in a vector space, prove the result for a spanning subset, and
try to extend it to all cases by linearity. This requires you to know or
prove that the simple case covers a spanning set; and it requires that the
condition you are proving behaves “nicely” when you add and take scalar
multiples.

For example, when proving facts about general integrable functions, we
commonly try to prove the result for positive functions, and then use the
linearity of integration to extend the result.

Good candidates for spanning sets include: vector bases, particularly or-
thogonal or orthonormal bases; positive vectors or functions; real vectors
or functions; vectors or functions in the unit ball of some norm; etc.

3. When working with classes of sets (such as σ-algebras and topologies),
try to prove the result for a simple generating class (such as a base or
sub-base of a topology; or a generating algebra of a σ-algebra) and then
try to extend using appropriate unions and intersections.

For example, when working with Lebesgue measure on R, we often start
with intervals, and then extend to measurable sets by taking countable
disjoint unions and complements.

Good candidates for simple classes of sets include: intervals, rectangles
and boxes (sometimes we need open or closed as well); balls in a metric
space; open sets of a topology; etc.

Sometimes you may need to combine these repeatedly. A tricky proof about
the Lebesgue integral could, for example, require you to start with characteristic
functions of intervals; extend that to characteristic functions of measurable sets
by the third technique; extend it to positive measurable simple functions by
linearity; extend it to positive measurable functions by density; and extend it
again by linearity to general integrable functions.

B.2 Use All the Hypotheses

Real analysis is a well-developed area of mathematics, so most theorems are
“sharp” in the sense that all the hypotheses are in fact required to prove the
result. If you find that when you are working a problem you have not used all
the assumptions, you may well be missing something.

B.3 Zorn’s Lemma

A more advanced technique which may be useful is using Zorn’s Lemma. Typi-
cally you have some partially ordered set (quite often some collection of subsets
of some set ordered by inclusion), and you want to show that if a particular
property P holds for every element of a totally ordered subset (often called a
chain), then you can find an upper bound for this chain for which P also holds.
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Then Zorn’s Lemma tells you that there is a maximal element for which P holds.
You often finish off the argument by showing that this maximal element is what
you want.

Example B.3.1
Let V be a complex vector space with an inner product 〈·, ·〉 : V × V → V .

A set {eα : α ∈ I} ⊂ V is orthonormal if

〈eα, eβ〉 =

{
1 α = β

0 α 6= β.

Then there is a maximal orthonormal set.
This follows by considering the collection O of all orthonormal sets in V .

This is partially ordered by inclusion, and given any totally ordered subset C of
O, we have that

F =
⋃

E∈C
E

is also orthonormal, because if we have any two elements v, w ∈ F , with v 6= w,
then there is some E ∈ C which contains both of these elements, and so 〈v, w〉 =
0. But F is an upper bound of C.

So we have satisfied the hypotheses of Zorn’s Lemma, and so there is at least
one maximal orthonormal set (in fact, there are usually many). 3

Zorn’s lemma is equivalent to the axiom of choice, so unnecessary use if
frowned upon. However can it make many arguments simpler, even when it
may not strictly be required.

B.4 Counterexamples

Sometimes you may thing that some fact from an exercise is not true. In this
case, having a good collection of “pathological” cases and common counterex-
amples can be useful.

When considering topologies, discrete, trivial and cofinite topologies are
worth looking at; as are other topologies which don’t separate points well. Dense
sets, such as the rational numbers in the real numbers, and nowhere dense sets,
such as the Cantor set, can also be useful.

For measures and σ-algebras, discrete, trivial and cofinite σ-algebras are use-
ful; counting measure and Lebesgue measure are also useful; the unmeasurable
set N discussed in the section on Lebesgue measure is particularly important;
as are “thick” Cantor sets which are nowhere dense, but have nonzero measure.

When thinking of functions, keep in mind counterexamples like functions
which are continuous everywhere but nowhere differentiable, or functions which
are discontinuous everywhere. Simple functions involving some of the sets from
above can also be fruitful sources of counter examples.
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When considering convergence of functions, you should have examples of
sequences of functions which converge in one sense, but fail to converge in an-
other. This might include sequences of functions which converge pointwise, but
not uniformly; pointwise or uniformly, but not in L1. You should also have some
examples of sequences of functions of a particular class which don’t converge to
something of the same class, such as a sequence of continuous functions which
converges pointwise to something discontinuous.

B.5 Use a Little Category Theory

Category theory is an abstraction of the many situations where you are con-
sidering certain classes of sets (called “objects” in category theory), and the
appropriate maps between them (called “arrows” or “morphisms” in category
theory). For example there are a lot of similarities when considering:

objects arrows
sets functions

groups group homomorphisms
rings ring homomorphisms

vector spaces linear maps
topological spaces continuous functions
measurable spaces measurable functions

metric spaces continuous functions
metric spaces Lipschitz functions

topological vector spaces continuous linear maps
Banach spaces bounded linear maps
Hilbert spaces unitary maps

For example, in each of these cases, composition of arrows gives you another
arrow, and the composition is associative; there is an “identity arrow” for each
object which leaves the object alone and is an identity for composition. In
addition in many of these examples you can take cross products of objects;
some arrows are invertible, and two objects linked by an invertible arrow are
effectively equivalent as far as category theory is concerned; and in some cases
once can build objects out of collections of arrows.

Category theory distills all of these settings (and many more) into an abstract
setting where you have a set of objects O, and a set of arrows, or morphisms, A,
and for each arrow f ∈ A there are two elements of O, the domain dom f and
codomain cod f (this makes (O,A) a directed graph, for those readers keeping
track of things). In keeping with the idea that f is modelling a function, we
write f : dom f → cod f . In addition there is a product on the arrows, where
for any arrows f and g with cod f = dom g, there is an arrow g ◦ f ∈ A with
dom g ◦ f = dom f and cod g ◦ f = cod g. For each object c ∈ A there is also
an identity arrow idc which has dom idc = cod idc = c and idc ◦ f = f and
g ◦ idc = g for all arrows f and g with cod f = c and dom g = c.

We can define many common ideas in terms of these arrows and objects.
An arrow f : a → b is invertible, if there is some other arrow g : b → a such
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that f ◦ g = ida and g ◦ f = idb. If two objects a and b have an invertible map
between them, then we say that they are isomorphic (ie. as far as the category
can tell, they are identical).

An arrow f : a→ b is monic if given any two arrows g1, g2 : c→ a, equality
f ◦ g1 = f ◦ g2 implies g1 = g2, ie. iff f can be cancelled on the left hand side.
This corresponds, in the case of actual sets and functions, to an injective (or
1-to-1) function.

Correspondingly, right cancallation of an arrow gives the analogue of surjec-
tivity.

One can go on with this sort of “abstract nonsense” for quite some time.
The key idea to get from category theory from a practical viewpoint, is

that there are natural things to consider depending on your context. If you
are working with vector spaces, you probably don’t want to condsider group
homomorphisms (even though vector spaces are additive groups); if you are
working with topological spaces, you really want continuous functions rather
than arbitrary functions.

B.6 Pitfalls to Avoid

There are a number of common mis-steps and pitfalls that you need to be careful
about.

Perhaps the most common is swapping the order of limits in an expression.
This can be done in certain circumstances, but it requires careful justification.
Similarly infinite sums, and integrals of functions involve limiting processes by
definition, and so you have to be careful in swapping the order of sums, integrals
and limits with one-another. Indeed, many of the key theorems of this course
specify exactly when you can swap safely.

Another is assuming that something which is true for concrete, visualizable
cases represents the “typical” situation. Indeed, such basic examples are usually
the exception rather than the rule. For example when considering functions on
the real line, most functions you can draw by hand are likely to be smooth
almost everywhere; but the vast majority of continuous functions are nowhere
smooth, and the vast majority of functions are not even continuous anywhere.
Being comfortable with counterexamples can help avoid these problems.
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accumulation point, 77
algebra, 175

commutative, 175
of sets, 9, 97
unital, 175

almost everywhere, 34, 101
Arzela-Ascoli Theorem, 96
axiom of choice, 90, 172

Banach algebra, 163
Banach space, 140

dual, 146
reflexive, 146

base, 81
neighbourhood, 80
sub-, 80

binary operation, 173
associative, 173
commutative, 173
left distributive, 174
right distributive, 174

Bolzano-Weierstrauss theorem, 87
bound

greatestlower, 177
least upper, 177
lower, 168
upper, 168

Carathéodory’s theorem, 21, 114
closure, 70
coarser topology, 70
collection, 167
constant of integration, 187
convergence, 75

in measure, 111
of a sequence, 74, 180
of a series, 183

absolute convergence, 184
conditional convergence, 184
pointwise, 184
uniformly, 184

pointwise, 85, 180
pointwise a.e., 47
pointwise almost everywhere, 47
radius of, 190
uniform, 180

convolution, 125
cover

finite, 87
of a set, 87
open, 87
subcover, 87

dominated convergence theorem, 54,
55, 58, 109

eventually, 74, 75, 179

family, 167
Fatou’s lemma, 48, 54, 108
field, 174

of sets, 9
finer topology, 70
finite intersection property, 87
Fourier coefficient, 191

complex, 192
frequently, 75, 179
function, 168

absolute value, 176
analytic, 190
antiderivative, 187
antilinear, 175
arc, 73
bijective, 169
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bounded away from 0, 179
characteristic, 169

of Q, 1
complex conjugate, 177
continuous, 71, 186

at a point, 71, 186
on a set, 71, 186
uniformly, 186

curve, 73
differentiable, 187

at a point, 186
infinitely, 187
n-times continuously, 187
on a set, 187

group homomorphism, 174
homeomorphism, 72
imaginary part, 177
injective, 169
integrable

Lebesgue, 50
Riemann, 188

inverse, 169
linear, 175
loop, 74
measurable, 102, 103

Borel, 103
Lebesgue, 27
on a subset, 102

monotone decreasing, 35
monotone increasing, 35
one-to-one, 169
onto, 169
open, 72
positive, 176
quotient map, 169
real part, 177
simple, 28, 105

standard representation, 28
step, 2
surjective, 169
trigonometric polynomial, 191

complex, 96, 191
real, 96

group, 174
abelian, 174

Hahn Decomposition, 130
Hausdorff Maximal Principle, 172
Heine-Borel theorem, 90
Hilbert space, 140
homeomorphic topological spaces, 72
homotopy equivalence, 74

identity, 174
indexed, 75
infimum, 177
inner product, 138
integral

indefinite, 187
Lebesgue

of a measurable function, 38
of a non-negative measurable

function, 37
of a simple function, 36

Riemann, 188
interior, 70
inverse, 174

Lebesgue decomposition, 133
limit, 76

of a function, 186
limit infimum, 182
limit point, 77
limit supremum, 182
lower sum, 188

map, 169
mapping, 169
maximal element, 168
measurable

with respect to an outer mea-
sure, 114

measurable space, 97
measure, 12, 100

complete, 23
complex, 128
counting, 100
Dirac, 100
finite, 101
Lebesgue, 24
outer, 16, 114

Lebesgue, 17
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point mass
unit, 100

positive, 128
pre-, 115
probability, 101
product, 121
semifinite, 101
σ-finite, 101
signed, 127

measure space, 100
σ-finite, 121
finite, 101
semifinite, 101
σ-finite, 101

mesh, 187
metric, 68
metric space, 68
minimal element, 168
monoid, 174
monotone class, 122
monotone convergence theorem, 45,

47, 48, 50, 108
multiplication

scalar, 174

net, 75
subnet, 75

norm, 136
of a partition, 187
operator, 143
uniform, 136, 178

numbers
complex, 173
extended reals, 173
integers, 173
natural, 173
rational, 173
real, 173

operator, 142
bounded, 142

order
directed, 168
linear, 168
partial, 168
total, 168

well ordering, 168

partition, 187
pointwise bounded, 96
preorder, 168

Radon-Nikodym derivative, 133
refinement of a partition, 187
relation, 168

equivalence, 168
ring, 174

abelian, 174
of sets, 9
unital, 174

semi-algebra, 115
semigroup, 174
seminorm, 136
sequence, 179

bounded above, 181
bounded below, 181
Cauchy, 181
monotone decreasing, 181
monotone increasing, 181

series, 183
Fourier, 191
geometric, 184
power, 190

set
arcwise connected, 73
Borel, 98
box, 13
Cantor, 25

thick, 26
closed, 67

of real numbers, 183
co-countable, 13
codomain, 169
cofinal, 79
cofinite, 12
compact, 88

of real numbers, 183
connected, 71
dense, 71
directed, 168
disconnected, 71
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domain, 169
elementary, 8
equivalence class, 168
equivalence class representatives,

168
Fσ, 99
Fσδ, 99
Gδ, 99
Gδσ, 99
image, 169
interval, 8
inverse image, 169
measurable, 21, 97

Lebesgue, 24
µ-measurable, 100
negative, 128
neighbourhood, 70
nowhere dense, 71
null, 16, 100, 128
of functions

equicontinuous, 96
self-adjoint, 96
separates points, 96
vanishes nowhere, 96

open, 67
of real numbers, 183

open ball, 68
open neighbourhood, 70
order complete, 177
path connected, 73
positive, 128
precompact, 88
quotient, 168
range, 169
σ-finite, 100
totally bounded, 90
unmeasurable, 5
well ordered, 168

set function, 12, 100
additive, 12, 100
countably additive, 12, 100
σ-additive, 12, 100

σ-algebra, 9, 97
Borel, 98
generated by a family of sets,

98

product, 118
relative, 106

Stone-Weierstrauss Theorem, 96
stronger topology, 70
subalgebra, 96
subnet, 78
supremum, 177

Tietze extension theorem, 94
topological space, 67

compact, 88
completely regular, 94
connected, 71
disconnected, 71
first countable, 80
Hausdorff, 92
LCH, 94
locally compact Hausdorff, 94
normal, 92
path connected, 73
regular, 92
second countable, 81
separable, 71
T0, 92
T1, 92
T2, 92
T3, 92
T31/2, 94
T4, 92
totally disconnected, 71
Tychanoff, 94

topology, 67
discrete, 69
generated by a family of sets,

80
metric space, 69
order, 91
product, 84
quotient, 84
relative, 70
strong, 84
trivial, 69
weak, 84
Zariski, 69

triangle inequality, 68
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upper sum, 188
Urysohn’s lemma, 94

vector space, 174

weaker topology, 70
Well Ordering Principle, 172

x-section
of a function, 121
of a set, 121

y-section
of a function, 121
of a set, 121

Zorn’s Lemma, 172
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