ON UNBOUNDED OPERATORS AFFILIATED WITH
C*-ALGEBRAS

CORRAN WEBSTER

ABSTRACT. We show that the multipliers of Pedersen’s ideal of a C*-
algebra A correspond to the densely defined operators on A, which are
affiliated with A in the sense defined by Woronowicz, and whose domains
contain Pedersen’s ideal. We also extend the theery of g-continuity
developed by Akemann to unbounded operators and show that these
operators correspond to self-adjoint operators affiliated with A.

1. INTRODUCTION

One of the principal philosophics in the the study of C*-algebras is that
they arc the non-commutative analogues of Cy{X), the algebra of continuous
functions on a topological space X which vanish at infinity. The multiplier
algebra M(A) of a C*-algebra A, from this point of view, corresponds to
the algebra C3(X) of bounded functions on the same topological space.

Thig point of view is perhaps most clearly revealed in the work of Ake-
mann [1, 2, 3] and Giles and Kummer [6] on ¢-topologics, in which certain
projections in the enveloping von Neumann algebra play a role analogous
to that of open scts in a topology. Akemann, Pedersen and Tomiyama [5]
showed that the analoguc of real-valued continuous functions in this sctting
corresponded preciscly to the sclf-adjoint clements of M(A), and the oncs
which “vanish at infinity” corrcspond to the sclf-adjoint clements of A.

An obvious question, then, ig what is the non-commutative analoguc of
the algebra C{X) of continuous functions on a topological spacc? The cor-
responding qucestion for von Ncumann algebrag is fairly well underatood.
The non-commutative analogue of unbounded measurable functions arc the
closed, unbounded operators affiliated with a von Neumann algebra.

If A is unital then this corresponds to the situation where X is compact,
and so we would expect that the analogue of C{X) would be A itsclf, so the
rcal interest lics in non-unital C*-algebras.

In the non-unital case, the problem can be approached by looking at
appropriate spaccs of multipliers. In the classical sctting, €'(X) is the mul-
tiplier algebra of C'.(X), the continuous functions of compact support on X.
C(X) is the minimal dense idcal of C'(X), and in the C*-algebra sctting
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this minimal densc ideal is called Pedersen’s ideal of A. Once can then study
the multiplicr algebra of this idcal as an analogue of C'(X), as was donc
by Lazar and Taylor [8]. Phillips [12] showed that this multiplicr algebra
was an cxample of a pro-C*-algebra, and was able to use that more genceral
theory to obtain many results.

A socond approach developed by Woronowicz [13] uses a particular trans-
form which maps certain unbounded operators to bounded oncs, where those
which arc mapped to the analogucs of the bounded continuous functions
must be the analogues of continuous functions. This method has been ap-
plicd with some suceess to the study of quantum groups. Lance [7] showed
that Woronowicz’ approach has a natural expression in terms of unbounded
opcerators on Hilbert C*-modules.

A third approach, which we introduce in this paper, is to gencralize the
idcas of Akemann to unbounded opcrators. We define g-continuity for sclf-
adjoint opcrators affiliated with an cnveloping von Necumann algebra in a
way that is preciscly analogous to the definition given by Akemann for cle-
ments of the von Neumann algebra itsclf.

We will show that all three approaches arce closely rclated. In particular,
the multiplicr algebra of the Pederaen ideal is exactly the sct of operators
from Woronowicz’ approach whosc domain includes the Pedersen ideal; and
the operators from Woronowicz approach and the third approach arc cssen-
tially the same.

The author would like to thank Prof. Edward Effros of UCLA and Prof.
Roger Smith of Texas A&M University for their support and comments
during the preparation of this paper.

2. C*-ALGEBRAIC AFFILIATION

In [13, 14] Woronowicz with Napiérkowiski considered a class of operators
on a C*-algebra A, defined as follows:

Definition 2.1. Let T be a densely defined linear operator on a C*-algebra
A with domain D(T), and let M(A) be the multiplier algebra of A. T is (C*-
algebraically) affiliated with A, written T € A if there exists a 27 € M(A)
with ||2r| € 1 and

z€ D(T) < Jac A suchthatz =(1- z}zT)ma and Tz = zro.
2y is called the z-transform of T.

Woronowicz showed that T is uniquely determined by the z-transform
and, converscly, given any z € M{A), with ||z € 1 and (1 — 2*2)/2A dense
in A, there is an unbounded operator T on A with z = 27.

The motivation bchind this definition is that if we have a map 2: C — D
which is a homcomorphism onto its image, then C'(X) can be embedded
(albeit, not *-homomorphically) into Cy(X) by composing a function in
C'(X) with 2. Woronowicz chose the function

2(€) =E(1 + €772
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which has inversc

Fl&) =€ -2,

The definition above cssentially says that Te = f(27)2, allowing for possible
difficultics with the functional caleulus.
Woronowicz was then able to prove the following facts:

Theorem 2.1. Let T € A. Then

1. T is a closed operator.

2. D(T) is a right ideal.

3. There is an adjoint T* defined by 21+ = 2.

4. If B is another C* algebra and ® : A — M(B) is an essential *
homomorphism (ie. ® is a C*algebra morphism), then there is a
®(T) € B where 2g(1) = ®(27)

5. IfT =T, letspT be defined to be f(spzr) and ((§) =& for £ € apT.
Then there is an essential ¥*-homomorphism @ from Cy(sp T) to M(A),
such that ®(¢)=T.

The functional calculus given above completely justifics the motivation:
zg is preciscly cqual to 2(T), and T = f({zr).

Woronowicz was able to apply this theory to discover unbounded opera-
tors which corrcsponded to gencrating clements for certain purcly algebraic
quantum groups.

It should be noted, however, that the sct of operators which are affiliated
with a non-commutative C*-algebra have no algebraic structure, in the same
way that the collection of closed densely-defined operators on a Hilbert space
have no algebraic structure.

3. Tue MULTIPLIER ALGEBRA OF PEDERSEN’S IDEAL

Podersen’s ideal K4 of a C*-algebra A is the minimal dense (two-sided)
ideal of A {scc [9, 10]). Lazar and Taylor [8] investigated the multiplier
algebra T'(K4) of this idecal, and proved a number of significant theorems
about it. Phillips [12] was able to simplify their work by observing that this
algebra is in fact a pro-C*-algebra—an inverse limit of C*-algebras—and
then using general theorems from that theory (see [11]) to reach many of
the same resulta ag Lazar and Taylor.

Phillips showed that I'(K 4) was the inverse limit

T(K4) = lim M

where (K 4) 4 is ordered by the C*-algebra order, and M, is the C*-algebra
of multiplicrs (S, T) where § : Az — Az and T : 24 — = A arc lincar and
aT(b) = S{a)bfor all a € zA and b € Azx. Thus any clement ¢ of T{K 4) can
be represented by a coherent sequence (ax)me(KA)_'_ where a, € M.
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Theorem 3.1. Let A be ¢ C*algebra, K, its Pedersen’s ideal and T'(K 4)
the maultiplier algebra of K4. For any a € I'(K ) there is some T, € A with
K4 C D(T,) end Tz = az for all z € D(T,).

Conversely, if T € A and K4 C D(T), then there is an element o € T'(K4)
such that Tz = ez for all x € D(T).

Proof. Given any e € I'(K 4), the functional calculus on I'(K 4) tclls us that
there is some z € I'(K 4) with

z=a(l +a*a)~ 2

In fact 2, = e,(1+ a;ar)_m for all # € (K4)+, and since ||2:]| < 1 for all
z € (Ka)+, we have || 2] = sup,¢eqi,), [l%]l £ 1. Henee 2z € M{A).

Let & € (I —2*2)Y/2A, so that there is some b € A with = = (7 — 2*2)Y/%b.
For sauch # we note that ez € A, gince

az = a(l — z*z)l‘mb

a{l —a’a(l + a*a)_l)mb
= a{l + ¢*a)"* /%

= zb c A

Furthermore the above caleulation shows that the operator

T2 = ez

defined on D(T,) = (I —2*2)'/?A has z-transform 2. Furthermorc if z € K4,
then

(I—22)" Y2 = (I —e*a{l +a*e)" )"V
=({I+a'a)?z e Ky
since, using the functional calculus, (I 4 a*e)'/? € T(K4). Hence Ky C
D(T,) and T is denscly defined, and we conclude that T, is C*-affiliated
with A.
fTEAand Ky C D(T), let 2r € M(A) be its z-transform. For cach
2,y € K, yand 2% € D(T), s0 y = (I — z%27)*/? for some b € A and
a* = (I — 2h2r)%e, and hence & = (I — 24har) Y2, for some ¢ € A. Define
a multiplier (S, T) on K 4 using multiplication by (I — 2p2r)~Y/2:
T{y) = (I — 2bzp)~ Y2 =b
and
S(z)=a(I— Zpar) Vi =¢
and thus
S(x)y = ey = (I — zhz7) b = ab = «T(y)
Hence (I — 2b2r)~Y% € T(K4), and as a consequence, so is ¢ = zp(f —
Z}ZT)_IM.
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Now for any = € D(T), & = (I — 2427)'/?b for some b € A, and thus
ax = 27 (I — z}zT)_mm = zrb=T=,
and so we have found the required clement ¢ € T'(K4). O

Although these operators from the multiplier algebra of Pedersen’s ideal
do not give all the operators affiliated with the C*-algebra, they do have
the advantage over the more general sctting in that they actually form a
*_algcbra.

4. ¢-ToroLoGIEs AND UNBOUNDED OPERATORS

Akemann [1, 2, 3] and, independently, Giles and Kummer [6] introduced
the idca of a ¢-topology.

Definition 4.1. Let A be a C*-algebra and A™ its enveloping von Neumann
algebra. We say that a projection p € A* is g-open if A*pnN A is a closed
left ideal of A. A projection p € A*™ is g-closed é¢f 1 — p is g-open, and
p e A*™ is g-compact if there is some a € A with ep = p.

Equivalently, p € A* is closed if the sct of quasi-states supported on p,

F(p)={p € Q(A) : p(1 —p) = 0},

is weak-* closed in the quasistates @(A) of A.

Projections which arc g-open behave like characteristic functions of open
gcts, in that given a family of ¢-open projections p, indexed by o in 1,
V .e1Po I8 also g-open. Unlike characteristic functions, however, given two
g-open projections, pr and pa, p1 Ap2 may not be g-open. Despite this defect,
g-open projections arc sufficiently analogous to a topology that Akemann
and Eilers [4] constructed a non-commutative end theory in this sctting.

By analogy with the classical sctting, we can make the following defini-
tions:

Definition 4.2, Let A be ¢ C*algebra. We say that a self-adjoint element
a € AY is g-continuous if spectral projections of relatively open seis ingp T
are g-open in A**. We say that a g-continuous element vanishes at infinity
if the spectral projections of closed sets which do not contain the identity are
q-compact.

This definition heavily relics on the spectral propertics of sclf-adjoint cl-
cments, and so docs not extend to a definition for gencral clements. Nev-
crtheless, these g¢-continuous clements are precisely what they should be,
as shown by the following result of Akemann, Pedersen and Tomiyama [5,

Theorem 2.2].

Theorem 4.1. Let A be a C*algebra. o € A% is g-continuous if and only
if a € M(A)sq C A,
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Given the success of this approach in the bounded sctting, and the well-
cstablished nature of the unbounded theory for von Neumann algebras, we
can rcasonably ask if this theory can be extended to unbounded operators.

Let M be a von Neumann algebra in B(H). Recall that a closed, sclf-
adjoint, denscly defined operator T on H is affiliated with M if cvery spectral
projection of T lics in M. In this situation, we write T'n M. Recall also that
there is a Borel functional calculus for sclf-adjoint opcrators affiliated with
M.

Definition 4.3. Let A be a C*algebra and A** its its enveloping von Neu-
mann algebra. We say that a self-adjoint operator T n A** is g-continuous
if spectral projections of relatively open sets inspT are g-open in A**.

Given this definition, we sce immeoediately that we have a functional cal-
culus.

Proposition 4.2. Let A be ¢ C*algebra. If Tn A** is g-continuous and
g :8pT — R is continuous, then g(T) n A** is ¢-continuous. Moreover, if ¢
is bounded, then ¢(T) € M(A) with | ¢(T)| < ¢l

Proof. First notethat ¢(T) is defined by the functional caleulus for operators
affiliated with a von Neumann algebra, since g is Borel.

Let X be a relatively open subset of sp ¢{T) = g(spT). Then g7 (X) is
relatively open in sp 7. Therefore yy-1(x)(T) is g-open, but x,-1x)(T) =
xx (g{T)). Hence ¢(T) i8 ¢-continuous.

If ¢ is bounded, then from the Borel functional caleulus, [|¢(T)| < [|¢]l
and ¢(T) € A%, But then by Theorem 4.1, g(T') € M (A). O

And so we can now show:

Theorem 4.8. Let A be @ C*algebra. Let T be a self-adjoint operator
T € A, then there is a unique g-continuous operator T'n A** with Tz = T'z
for all x € D(T). Conversely, if T'n A** is ¢g-continuous, then there is a
unique self-adjoint operator T € A with Tz =T’z for all 2 € D(T).

Proof. We can represent A** in B(H,) where 7, ¢ A — B(H,) is the uni-
versal representation of A.

Let T € A be sclf-adjoint, and let 27 be its z-transform. 2 € M(A), so
21 i8 ¢-continuous. Morcover zr is sclf-adjoint and 1 ¢ sp2r. Let

[ =¢a-e97”,
which is continuous for |¢|| < 1, so we have that T/ = f(zr) is ¢-continuous
and affiliated with A**, and uniquc.
If x € D(T), then for any & € H,,
Toé = zraf = zr(1 — 2jor) ™" P0€ = T'ag,
so Tw =T'x.
Convcerscly, let T/ n A** be g-continucus. Let

2(8) = (1 + &)™,
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which is continuous on C. By Proposition 4.2, zr = z(T) is ¢-continuous,
||| < 1, and zr € M{A). Morcover, 1 # spzr = 2(spT), so by the
functional calculus for C*-algebraically affiliated operators, there is a unique
T = f(2r) €A.

Once again, if # € D(T), then for any £ € H,

Taé = zraé = 2p(1 — 2p2p) Y 20E = T'2€,
so Tz =T'z. O

This analysis has so far dealt only with sclf-adjoint opcrators. If T € A,
then zr has polar decomposition in A**, where 27 = v|zr|, whete |27| =
(h2r)? € M(A),, and v is a partial isometry in A**. Then for any
z € D(T), we have

Tz = v|2r|(1 — |zr)?) 2.

In other words, there is an operator |T| = f{|zz|) € A, with 2y = 27|,
D(|T|) = D(T), and T = v|T|. Theorem 4.3 then tells us that we can find a
sclf-adjoint, ¢-continuous operator |T'| 7 A** which agrees with |T'| on D(T),
and so for all 2 € D(T),

Tz = v|T|'s.

The operator T/ = »|T|' is affiliated with A**.

We can also recover T from T, since the uniquencss of polar decompo-
sition of opcrators affiliated with A** tells us that given TV, |T| = [T] =
((TY*T)/? and v is the unique partial isometry such that T = »|T'|. Theo-
rem 4.3 then tells us how to find |T| from ||, from which we have T = »|T)|.

Thus, cven in the non-sclfadjoint case, g-continuity and C*-algcbraic af-
filiation arc clogely linked.

REFERENCES

[1] ©. A. Akemann. The general Stone- Weilerstrauss problem. J. Functional Anal., 4:277-
2094, 1969.

[2] C. A. Akemann. Left ideal structure of C*-algebras. J. Functional Anal., 6:305-317,
1870.

[3] €. A. Akemann. A Celfand representation theory for C*-algebras. Pacific J. Matk.,
35(1):1-11, 1971

[4] C. A. Akemann and 8. Eilers. Noncommutative end theory. Pacific J. Math, 185:47-
88, 1908.

[6] C. A. Akemann, G. Pedersen, and J. Tomiyama. Multipliers of C*-algebras. J. Fune-
tional Anal., 13:277-301, 1973.

[6] R. Ciles and H. Kummer. A non-commutative generalization of topology. Indiana U.
Math. J., 21{1):91-102, 1971.

[7] E. C. Lance. Hilbert C*-Modules: A Toolkit for Operator Algebraists. Number 210
in London Mathematical Society Lecture Notes Series. Cambridge University Press,
Cambridge, 1995.

[8] A. J. Lazar and D. C. Taylor. Multipliers of Pedersen’s ideal. Mem. Amer. Math.
Soc., 169, 1976.

[9] G. Pedersen. Measure theory for C*-algebras. Math. Scand., 19:131-145, 1966.



8 CORRAN WEBSTER

[10] G. Pedersen. C* Algebras and their Automorphism Croups. Academic Press, Londen,
1978.

[11] N. C. Phillips. Inverse limits of C*-algebras. J. Operator Theory, 19:159-195, 1988.

[12] N. C. Phillips. A new approach to multipliers of Pedersen’s ideal. Proc. Amer. Math.
Soc., 104(3):861-867, 1988.

[13] 8. L. Woronowicz. Unbounded elements affiliated with C*-algebras and noncompact
quantum groups. Comm. Math. Phys., 136(2):399—432, 1991.

[14] 8. L. Woronowicz and K. Napiérkowski. Operator theory in the c*-algebra framework.
Rep. Math. Phys., 31:353-371, 1992.

UNIVERSITY OF NEvapa Las VEGas
E-mail address: cuwebsterfnevada.edu



