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Introduction

This thesis aims to develop some theory about representation theory and harmonic anal-
ysis on the automorphism group of a homogeneous tree. To this end, it is divided up
into two chapters.

The first details the graph theory, group theory and geometry associated with ho-
mogeneous trees that is required for the second chapter. Although trees occur in many
areas of mathematics, the first study of homogeneous trees was instituted by Jean-Pierre
Serre, and his book Trees [11] was the outcome of this. These ideas were added to by P.
Cartier, amongst others. Underlying the geometric and graph theoretic aspects, are some
concepts from group theory which are not part of a usual introductory course on group
theory, so for this reason I have included a section, largely derived from Robinson [10]
and Serre [11].

The second chapter starts with some introductory theory on Haar Measures and
Representations, and then classifies and discusses two specific types of representations
on the automorphism group of a homogeneous tree. The theory of the special and
cuspidal representations is essentially due to G. I. Ol’shianskii, with some refinements
due to Allessandro Figa-Talamanca and Claudio Nebbia. However in the treatment of
the cuspidal representations | have attempted to highlight the similarities between these
and the special representations, at the cost of glossing over some of the technical details.

At the end of each chapter I have included a short section which gives some additional
information, without proof, about how the substance of the chapter might be generalised,
or important extensions to the theory.

The source for most of this thesis has been A. Figa-Talamanca and C. Nebbia, Har-
monic Analysis and Representation Theory for Groups Acting on Homogeneous Trees [4],
and most of the results and proofs come from here, although many have been altered to
some extent. | have been slightly more thourough at the basic levels, providing proofs
for a number of results that are simply stated in Figa-Talamanca, and going into more
detail in some of the other areas, such as the discussion of the point stabiliser subgroups.
The only other major difference is the method of showing unimodularity of the automor-
phism group. I have approached though the expression of the automorphism group as a
product of groups, whilst Figa-Talamanca uses the concept of Gelfand pairs to get the
same result.



Chapter 1

Automorphisms of Trees

In this chapter we build up some graph and group theory and then investigate the au-
tomorphisms of trees and the structure of the group of automorphisms of a tree. We
basically follow Figa-Talamanca [4] throughout this chapter, however Section 1.2 intro-
duces some ideas from group theory which are largely from Robinson [10], and occasional
ideas come from Serre [11].

1.1 Graphs and Trees

Before we proceed, we need some basic graph theory.

Definition 1.1.1 We make the following definitions:

An oriented graph I' = (V, E) consists of a set V, of vertices of I', a set F, of (directed)
edges of I', and an incidence relation which is a map

y—(o(y),ty): E—=VxV

Fory € Y we call o(y) the origin of y, t(y) the terminus of y, and together they are the
extremities of y.

If the incidence relation is injective, then we can denote each y € Y wuniquely as an
ordered pair (u,v) € V. x V, where u = o(y) and v = t(y).

If, in addition, an oriented graph I' = (V, E) has a map
y—y: K — K

such that for each y € Y we have §y =y, ¥ # y and o(y) = 1(y), then T is referred
to as a (non-directed) graph.

Fory € Y we call, § the inverse of y, the pair {y,y} a (non-directed) edge of I'. Again,
we refer to o(y) = t(y) and t(y) = o(y) as the extremities of the edge {y,7y}.

If the incidence relation is injeclive, then we can denote every non-directed edge {y,y}
uniquely by the unordered pair {u,v}, where u,v € V and u, v are the extremilies

of {y,7}.



Some references refer to graphs where the incidence relation is not injective as multi-
graphs.

Graphs can be represented diagrammatically by marking a point for each vertex of
the graph, and a line for each pair of edges {y,%}, with endpoints of the line being the
points corresponding to the vertices which are the extremities of the edge, like this:

In a similar fashion, we can draw a diagram representing a directed graph, but we
represent the directed edge y by a line with an arrow pointing from o(y) to ¢(y), like this:

Definition 1.1.2 Let I' = (V| F) be a (possibly directed) graph.

A pair of distinct vertices are adjacent if they are extremities of the same edge.

The valence or degree of a vertex v € V, val(v), is the number of directed edges y € E
for which o(y) = v. If ' is non-directed, then this equals the number of directed
edges y € E for which t(y) = v. The valence of a vertex may be infinite.

A graph is locally finite if the valence of every vertex is finite.

A path in T" is an alternating sequence of vertices and edges, vo, Yo, V1, Y1y Yn_1,Vn,
where v; € V, y; € E and o(y;) = v; and t(y;) = viy1, for all i.

The length of a path with n edges, vo, Yo, V1, Y1, - -+ Yn_1,Vn, IS 0.

A graph T is said to be connected if all pairs of distinct vertices have a path between
them.

A chain in T is a path, vo,Yo, V1, Y1,y Yn-1,Vn, for which y; # Y1 for all ¢ €
{0,...,n —2}.

A loop in ' is a chain, v, Yo, V1, Y1,y Yn_1, Un, where vg = v,

Note that if the incidence relation is injective, then we can refer to a path simply by
the vertices, as there is a unique edge defined by the extremities. In this case a path is
a chain if v; # v;1q, for all 1 € {0,...,n — 2}.

We have now reached the point where we can define what a tree actually is.

Definition 1.1.3 A tree is a connected, non-directed graph with no loops.

A direct consequence of this definition is that given a tree I' = (V, E), every pair of
points u,v € V has a unique chain between them (existence follows from the connected-
ness of the graph, and uniqueness from the fact that there are no loops). We call this
unique chain the geodesic between u and v, and we represent it symbolically as [u, v].

The following are the two types of trees which will be of special interest.



Figure 1.1: Homogeneous trees

Definition 1.1.4 A homogeneous tree of order ¢ + 1 is a locally finite tree where each
vertex has valence g + 1.

A semi-homogeneous tree of order (¢ + 1,7 + 1) is a locally finite tree where each
vertex has either a valence of g+ 1 or a valence of r+ 1, and no two vertices of the same
order are adjacent.

(The convention of using g+1 and r+1 springs from convenience in handling spherical
functions)

One could conceive of a homogeneous tree of order 0 as being a single vertex with
no edges, however this is a trivial case and we will ignore it. One must also note that a
semi-homogeneous tree of order (¢4 1,¢+ 1) is in fact a homogeneous tree of order ¢+ 1.
The first few examples of each type of tree are illustrated in figures 1.1 and 1.2.

Having defined the objects with which this thesis is concerned, we will now define
some further useful concepts from graph theory:

Definition 1.1.5 Two graphs I' = (V, E) and A = (U, D) are isomorphic if there exists
a bijective map o : I' — A such that o maps vertices to vertices, edges to edges and
preserves the incidence relations, te. if 1 and j are the respective incidence relations,
then 1 = j o av.

The map « is called a (graph) isomorphism.

Definition 1.1.6 Let I' = (V| E) be a (possibly directed) graph. (U, D) is a subgraph of
I'if U CV, DCFE such that for ally € D, o(y) € U and t(y) € U.

A subtree of a graph is a subgraph which is also a tree.

A subtree T = (U, D) is complete if for all w € U, the valence of v in T is either 0,
1 or the same as the valence of u in I'. (The 0 valence case only applies for the trivial

tree U = {u}.)



Figure 1.2: Semi-homogeneous trees

Note that since a tree has no loops, a subgraph of a tree is automatically a subtree if
it is connected and non-directed.

There is nothing unusual about the above definitions, and they are almost exactly
what one would expect.

Definition 1.1.7 Let I' = (V, E) be a non-directed graph.
An orientation of T' is a subset Ey of E, such that E is the disjoint union F, U F.

An orientation can be considered a way of getting a pair of directed subgraphs from

a non-directed graph, by setting I'y = (V, E,) and T'y = (V, ).

Definition 1.1.8 Let I' = (V| E) be a (possibly directed) graph. The barycentric subdi-
vision of I' is the graph I = (V' E') where V! = VU FE and E' = F x {0,1}, with the
incidence relation
(y,1) = (0'(y,1),(y, 1))

defined by

o(y,0) = oly)

t'(y,0) =y = d'(y,1)
Uy, 1) = ty)

Intuitively, the effect of barycentric subdivision is to create a new vertex in the “mid-

dle” of each edge. (See figure 1.3).
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Figure 1.3: Barycentric Subdivision

1.2 Concepts from Group Theory

In this section we will explore some ideas from group theory, essentially following Robin-
son [10], and make some connections to the theory of graphs.

Definition 1.2.1 Given a group GG, and a subset X of G, we define the subgroup gen-
erated by X, written < X >, as the subgroup which is the intersection of all subgroups
which contain X. We also define the normal closure of X in GG to be the normal subgroup
which is the intersection of all normal subgroups which contain X.

We notice that < X > is the set of all elements of the form z°...z}* where ¢; €
{=1,41}, ; € X and k > 0 (if £ = 0, then we treat the product as being 1g). This
leads us to the following definitions.

Definition 1.2.2 Given an arbitrary set S, called an alphabet of symbols, we define:

A word on S is a finite sequence symbols of S, (s1,...,8,), usually writlen s1...5n,
with s; € SUS™! for 1 <i <n, where S™" is the set {t7': 1 € S}.

A reduced word on S is word where no s € S is adjacent to ils inverse s~' € S, thal
is, there are no occurrences of ss™* or s™'s for any s € S.

The product of two words s1...s, and t1...1,, is the concatenation of the two words,
te. the word s1...8,01 .. . 1.

The inverse of a word sy ...s, is the word written in the reverse order with every term
inverted, ie. the word s7'...s7" (we define (s71)71 = s).

The empty word e is the word with no symbols.

We note that every word can be turned into a unique reduced word by repeatedly
removing all adjacent pairs of symbols and their inverses. We can therefore define con-
catenation on reduced words by normal concatenation, followed by reduction. It it is
easy to see that for set X, the set of reduced words on that set forms a group under this
concatenation, with the inverse being the word inverse, and e the identity of the group.

Definition 1.2.3 Given a sel X, the group F of reduced words on X is called the free
group on X.



We note that F'= < X >, and we will often write < X > for the free group on X.

An important result of concerning free groups is that given a set X and a map ¢ from
X to some group G, there is a homomorphism «a from < X > — G such that given the
map [ from X into < X > defined by identifying X with the appropriate generating
element of < X >, ¢ = awo 3. This is called the universal property of free groups.

A corollary of this is that is that every group is the image of a free group under some
homomorphism, that is, given a group (G, there exists a free group F' and an epimorphism
(surjective homomorphism) P : F' — (. This is derived from the universal property by
setting X = G, and getting F'= < G >.

Definition 1.2.4 Such an epimorphism P : F' — G is called a (free) presentation of G.

The normal subgroup of F', R = ker(P), is called the set of relators of the presentation.

If S is a subset of F' such that the normal closure of S in F is R, then we call S a set
of defining relators and all r € R\ S are called consequences of S.

Given a projection P : F' — G, if F' = < X >, then Y = P(X) generates G. If S
is a set of defining relators, then we will write G = < X | S >, since ( is isomorphic
to the group generated by G with the normal closure of S factored out. Sometimes
we will simply refer to < X | S > as a presentation of G. We may also write this as
<X|s=e:s€S8>.

We now use presentations to provide a link between groups and graphs.

Definition 1.2.5 Given a group G wilth a presentation P such that G =< X | R >, we
define the Cayley graph I'(G, P) of the presentation as the graph I' = (G, E), where for
all g,h € G, (g,h) is an edge if 3 x € X such that g = h or gz~ = h.

We notice immediately that the Cayley graph must be connected and that if the
number of generators is finite, then the valence of every vertex of I' must be constant.

Example 1.2.1 The cyclic group Cy over the symbol a has a presentation < a | a* = € >.
So the edge set of the Cayley graph is:

{{e,a}, {a, 0’} {a® a7}, {a7" e} },

Example 1.2.2 The group Z has a presentation < 1 >. So the edge set of the Cayley

graph is:
{.. ., {-2,—1},{-1,0},{0,1},{1,2},...}

-2 -1 0 1 2



We note that the Cayley graph of Example 1.2.2 is a tree, and as we are interested
in trees, we want to know if there are other groups which have Cayley graphs which are
trees.

Proposition 1.2.1 The Cayley graph of a free group, F, is a tree.

Proof:

We know that the Cayley graph of F' is connected, so it only remains to be shown
that it has no loops.

Assume that there is a loop in the Cayley graph of F. That is, there is a chain
Y = Zgy..., Ty, with zg = z,,. This implies that there is a reduced word, W, of generators
of F of length n such that oW = z,, = z¢, that is W = e. But by the definition F, there
is no such word, other than the empty word, e, which has length n = 0, and no chain
can have length n = 0. So we have a contradiction. |

All these trees have an even valence for their vertices. There are groups which have
Cayley graphs which are trees where all the vertices have odd valence, but to describe
these we need the concept of a free product.

Definition 1.2.6 Given a family of (disjoint) groups, {G;}icr for some index set I, we
define the free product of the G; to be

* Gi=<|JGi|S>

el iel
where
S = {gugzzgz_gl 19, 9ir € Gz fOT some 1 € ]7 iy = gilgig}

On an intuitive level, this construction is imposing the multiplication of each group
on all appropriate elements of the free group generated by the G, since what we are
doing is in effect setting gilgiz)g;l = e, ie. gi, i, = Gis-

More concretely, it can be shown (Robinson [10, §6.2, p163]) that the elements of
the free product are exactly the reduced words of the form ¢1¢; ... g3 where if ¢; € G},
then giy1 ¢ G; and with multiplication being concatenation of the words, followed by
reduction via

If ¢;, gi+1 € G for some j, then replace them by their product in G, ¢;gi41-
If g; = e, the identity element of GG, then remove g;.
Repeat these steps as necessary.

Example 1.2.3 Let Gy = Gy = Zy, then if a is a generator of G, and b is a generator
of Gy, then
G+ Gy =<{a,b} | a* =0 =¢ >

or, using the reduced word form,
Gh* Gy ={...,baba,bab,ba,b,e,a,ab,aba,abab,...}
The next obvious step is to look at the Cayley graph of this group. We get the edge

set:
{...,{ba,b},{b,e}, {e,a},{a,ab},...}

which has the following diagram:



-—----0 o o——--—--

ba b € a ab

We note that the graph of this group and that of the integers are isomorphic.

Example 1.2.4 Let G; =Z foriv=1,....n. Then

k Z = <{d:i=1,....n, jeZ}|{ddta7"i=1,...\n, jkeZ}>
i=1

= <{a;:1=1,...,n}>

- F

So the free product of n copies of the integers is F,. In fact F, x F,, = F 1.

We now have enough to describe a large class of groups for which the Cayley graphs
are trees.

Theorem 1.2.2 The Cayley graph of

FoxZig* - x 1y
—_——

t times

is @ homogeneous tree of order ¢+ 1 where g+ 1 = 2s +t.

Proof:

The graph is a Cayley graph, so it is connected and the valence of each vertex is
constant. So we need to show that there are no loops.

Let X ={ai,...,a5,b1,...,bs} be the set of generators, then if there is a loop in the
Cayley tree, v = vg,...,v,, such that vg = v,, then there must be a reduced word W
on X such that vgW = v, = vg. Thus W = [e]. W cannot be aiai_l or b? = bjbj_l, since
both these imply that two consecutive edges in the loop are inverses of each other. Thus
W =e.

Thus there are no loops, so the Cayley graph is a homogeneous tree.

Finally, there are 2(t 4+ s) possible directed edges out of e, corresponding to each
element of X U X1, but since b; = b7 ', s of these have been double-counted. Thus there
are 2t + s edges from e, so ¢ + 1 = 2t + s. [ ]

It turns out that these are the only groups which have locally finite Cayley graphs
which are trees (see section 1.8).
We now discuss a generalisation of the free product, the amalgamated product.

Definition 1.2.7 Given a family of (disjoint) groups, {G;}ticr for some index set I, a
group A, and a collection of injective homomorphisms ¢; : A — G, for all 1 € I (that
is we can think of A as a subgroup of G; for all i). Then we define the amalgamated
product of the G; to be

* G;

el




where N is the normal closure of the set

{¢i(a)¢j(a)™" :4,j €1, a € A}

Intuitively, this is “amalgamating” all the “copies” of A in the group >k G into just
iel
one “copy”.

More concretely, it can be shown (Serre [11, §1.2, p2]), that the elements of 3k G}
A

can be represented as pairs (a, s1...5,), where a € A and s; € 5;\ {1}, S; a set of right
coset representatives of ¢;(A) in G, and if s; € S; \ {1} then s;0.1 ¢ S;\ {1}.

To conclude this section we look at a generalisation of the direct product, the semidi-
rect product.

Definition 1.2.8 Given a group G, NG, and H < G such that G = HN and HNN =
1, then GG is said to be the internal semidirect product of N and H, written G = H>< N
or G =N >H.

From Robinson [10, §1.5, p27], we get that each element of (G has a unique expression
of the form hn (h € H, n € N) and that conjugation of N by an element of H gives
an automorphism of N, so we get a homomorphism a : H — Aut(N) (in other words
H acts on N). We note that if this homomorphism is the trivial homomorphism, then
G=HxN.

These facts allow us to reverse the definition and construct a G from H and N.

Definition 1.2.9 Given two groups H and N and a homomorphism o : H — Aut(N),
we define the (external) semidirect product of H and N, written H><, N or N >, H,
as the set {(h,n) : h € H, n € N} with multiplication defined by

(h1,m1)(h2,n2) = (hihg, a(hz)(ni)nsg)

We notice again that if « is the trivial homomorphism, then the semidirect product
and the direct product coincide. The definition of the multiplication is motivated by the
fact that we are trying to simulate conjugation by hy and the fact that (hiny)(heng) =
hihy(hy nihy)n, always.

Robinson shows that if G = H><, N then G is also the internal semidirect product
of H and N when imbedded in G by h +— (h,e) and n — (e,n) respectively. Thus we
will, in future, simply refer to the semidirect product of two groups.

1.3 Metrics on Trees

One can define a metric dy on the vertices of a tree (V, E) in the following way:

Definition 1.3.1 The distance dy(v,u) between two vertices v,u € V is the length of
the unique chain between v and u, or 0 if v = u.



Proof:

dy is by definition a map from V to {0,1,2,...}, so it certainly has the correct range
for a metric.

By definition, dy(v,v) = 0.

If dy(v,u) = 0 then since all chains have a length of at least 1, there cannot be a
chain between v and u, so they must be the same vertex.

If dy(v,u) = n, then there is a chain v, v1, ..., v,_1, u, but since (v;,v;41) € F implies
(vig1,v;) € B, u,v,-1,...,v1,0 is a chain, and thus it must be the unique chain between
wand v. u,v,_1,...,v1,v has length n, so dy(u,v) = dy(u,v).

If dy(v,u) = n, and dy(u,w) = m then

dy(v,u) + dy(u,w) = length of v,v1,...,v,-1,u + length of w,uy,... , tup_1,w
= length of v,vy,..., 00 1, U Uy, .. Up_1, W
> length of v, vy,..., 054, Ugye oy U1, W
> dy(v,w)
So dy is a metricon V. [ |

The metric dy on V gives sufficient information to construct the whole tree, since F
is exactly the set of all pairs {v,u} where dy(v,u) = 1.

Definition 1.3.2 Given some vertex v € V, we define the ball of radius r at v by
By(r) ={u eV :dy(v,u) <r}
and the boundary of B,(r) as
OB,(r) = {u €V 1 dy(v,u) =r}
More generally, given a finite subtree T = (U, D), we define the boundary of T by
AT = {u € U : valp(u) < valp(u)}
Finally, for a sublree T, we define the diameter of T' Lo be
diam(T) = maz{dy(u,v) : u,v € T}

We will sometimes abuse notation by referring to the subtree (B,(r), D), where D is
the set of edges with both extremities in B,(r) as B,(r). In this case the two definitions
of the boundary coincide. We will extend the definition of boundaries to infinite trees in
section 1.4.

The metric topology on V', (V. dy) is the discrete topology on V, and it is well known
that we can construct a metric de on the compact sets of this topology in the following
manner:

Definition 1.3.3 Given two compact (ie. finite, since (dy,V) discrete) sets A,B C 'V,
define
A, ={veVidy(v,u) <r, for someu € A}

and B, similarly, then
de(A,B)=inf{r € Z: AC B,andB C A,}



In particular we note that since finite subtrees and edges can be represented as finite
subsets of V', we can define metrics on the set of subtrees and on the set of edges as
follows:

Definition 1.3.4 Given two finite subtrees Ty = (Uy, D1) and Ty = (Uz, D2) of a lree,
then the distance between them is defined to be dp(Th,Ty) = de(Ur, Us).

Given two edges y1 = {u1,v1} and yo = {ug,v2} of a lree, we define the distance
between the edges to be dg(y1,y2) = de({ur, v1}, {uz, v2}).

In effect these two definitions are simply the restriction of the compact metric to the
set of finite trees and the set of edges respectively. In all three cases the metric topology
will again be the discrete topology on the appropriate set.

1.4 The Boundary of an Infinite Tree

From Section 1.1, we note that once the order reaches a certain size, (specifically when
all arguments of the order are > 2), both the homogeneous and semi-homogeneous trees
become infinite. This leads to the possibility of having chains of infinite length and
additional structure derived from them. However, the following discussion is not limited
to homogeneous trees, but in fact holds for any infinite tree.

Definition 1.4.1 An infinite chain is an infinile sequence vg, vy, v, ... of vertices such
that for all i, {v;,vi11} is an edge and v; # viya.

Two chains vg, vy, v, ... and Yo, Y1, Y2, ... are equivalent if there is some n and some
m for which vyy1p = Upar, V k> 0.

The boundary, Q, of an infinite tree is the set of equivalence classes of infinite chains.

If the infinite chain vg, v1,vq,... is in the equivalence class w € ) then we say w is
an endpoint of vg, vy, va,. ...

Sometimes it will be convenient to think of the boundary of a tree as being the set
of all infinite chains of the form o, vg,v1,v,,... where o is some fixed vertex. These
two concepts are equivalent, since the chains o, vg, v1, vg, ... are merely a complete set of
representatives from each equivalence class of ().

Definition 1.4.2 A doubly infinite chain is a lwo-sided infinile sequence of vertices,
ey Vg, U_1,00, V1, Vg, ... such that for all v, {v;,v;41} is an edge and v; # viys.

We now want to extend the definition of geodesics to include the boundary.

Definition 1.4.3 We call the infinite chain vy, v1,v,,... € w the (infinite) geodesic

from vy to w, written [v,w), and the doubly infinite chain ..., v_9,v_1,v9,v1,02,... with
Vo, U1, V2, ... € Wi and vy, v_1,... € w_ the (infinite) geodesic from w_ to wy, writlen
(w_,wy).

For any given v € V, w,wy,w_ € Q, the infinite geodesics [z,w) and (w_,wy) are
unique.
We can now define a topology on V U Q as follows.



Figure 1.4: An Open Neighbourhood of w

Definition 1.4.4 We define the topology by setting each element of V' open, and define
a basis of open neighbourhoods for each element of ).

Let v € V, w € Q. The for each u € [v,w) we define the neighbourhood N, (v, u)
of w to be the set of all vertices and end points of the infinite chains [x,v) such thal
[v,u] N[z, v) = {u} (ie. the infinite chains which contain no vertex of [v,u] except u).

See Figure 1.4 for a diagram of what the open neighbourhoods look like. Note that
there is considerable duplication amongst the neighbourhoods: If [v,w) N [u,w) = [z,w)
then V y € [z,w), N,(v,y) = No(u,y), and if [v,u] C [v,w) N [v,v) then N, (v,u) =
N, (v, u).

Theorem 1.4.1 V U Q is compact.

Proof:

Choose some vertex o € V. Let a, = maxz{val(v) : v € dB,(r)}. Let A = (U, D) be
a tree for which there is some o € U such that val(v) = a4, (v,0) for all v € U. Clearly
I is isomorphic to a subtree of A. Let A be the boundary of A. We will show U U A is
compact.

Firstly we can identify A with Il = Z,, x H?; Z,,_, since the chain from o to
6 € A has ag choices for the second element, and a; — 1 for the (¢ 4+ 1)st element of
the chain. Furthermore this map is a homeomorphism since the product topology on II
has a base of neighbourhoods where given v € 1I, n € Z, we have the neighbourhood
N,(n)={Aell:\ =+, 0<i<n}, which exactly the corresponds with restriction
of the open neighbourhoods of U U A to A. Thus A is compact, since by Tychanoff’s
theorem, Il is compact.

Let {W;}, ¢ € I be an open cover of basic sets of U UA. Then {W; N A}, 1 € [ is an
open cover of A. Therefore there is a finite subcover {W; N A}, of A.



Figure 1.5: “Pruning” A

Now there must be some m such that
!
dB,(r) C U W;
i=1
otherwise we would be able to construct an element of A which was not covered by

So (UUA)\(U]-:1 IW;) C B,(r). Now for each v € B,(r), there exists some Wy, k € [
such that v € Uy. Since |B,(r)| is finite, we can append this finite number of additional
sets to {W;}7., and get a finite subcover of the whole set.

Thus U U A is compact. This means that V U Q is compact, since we can get V U ()
from U U A by “pruning” A down to I'. Each time a vertex is removed from A, an open
neighbourhood is removed from U U A. (See figure 1.5). Thus V U is closed, since it is
homeomorphic to /' U A minus some union of open sets. So V' U () is compact. |

Corollary 1.4.2 Q is compact.

Proof:
V U Q is compact. V is a union of vertices, which are all open, so V' is open. =
(VUQ)\ V. Thus Q is closed, so  is compact. [ |

Proposition 1.4.3 V is dense in V U ().

Proof:
Consider the geodesic [vg,w). The sequence {v;}2, clearly converges to w. For each
w € () there exists such a sequence, so we have our result. [ |

We can also define a collection of measures on {2.



Definition 1.4.5
Qu,v) ={w € Q:[u,v] C[u,w)}

Then {Q(u,v):v € dB,n} partitions © into |0B,n| open and compact sets. We can
then use these partitions to generate a o-algebra on ().

Definition 1.4.6 Given a path vy, ..., v,, we define the following function

n—1

Pug (V) = val(vg) X H val(v;)

=1

1
Pug (vn)
use this function to define a probability measure v, on the o-algebra above, by setting

vu(Qu,v)) = puIW' Since this is a probability measure, 1, (2) = 1.

is the probability that a random walk starting at vy will pass through v,,. We

Furthermore, since the Q(u,v) are a basis for the relative topology on €, we can
extend the o-algebra to the Borel o-algebra, and the measure to a Borel measure.

1.5 Automorphisms of Trees
Now, following Figa-Talamanca [4], we consider mappings of trees onto themselves.

Definition 1.5.1 An automorphism of a tree (V, E) is a bijective map g : V — V which
preserves edges. ie. g(u) and g(v) are adjacent iff v and v are adjacent.

These automorphisms are exactly the surjective isometries of the metric space (V, dy).
Lemma 1.5.1 g is an automorphism of (V, E) iff g is an isomelry of (V,dyv).
Proof:

If ¢ is an isometry of (V, dy), then ¢g(v) and g(u) are adjacent iff dyv(g(v), g(v)) = 1iff
dy(v,u) =1 (since g is an isometry) iff v and u are adjacent. So g is an automorphism

of (V, E).
Conversely, if ¢ is an automorphism of (V, E), then if dy(v,u) = n, there exists a
unique chain v, vq,...,v,_1,u of length n. But g(v),g(v1),... g(vn-1),u is a chain, as for

all ¢, g(v;) and g(vi41) are adjacent since v; and v;4; are adjacent, and g(v;) # g(vit1)
since ¢ is a bijection. g(v),g(v1),... g(vn-1),u has length n, so dv(g(v),g(u)) =n. So g
is an isometry of (V,dy). [ |

We can now split automorphisms of a tree into three classes.
Definition 1.5.2 An automorphism g of (V, E) is:
i. A rotation about o if g stabilises some vertex o, ie. 3 0 € V such that g(o) = o.
it. An inversion aboutl an edge e if g stabilises e, but exchanges ils endpoints.
iri. A translation of step 7 along a geodesic ~ if there is a geodesic
Y= ...,U_9,V_1,0g,V1,0Vz,...

such that g(v,) = vuy; for all n.



Theorem 1.5.2 For all automorphisms g of a tree (V, F), g is either a rotation, an
inversion or a translation.

Proof:

Let v € V be a vertex such that dy (v, g(v)) = min{dy(u,g(u)):u €V} =7.

If 7 =0, then ¢g(v) = v, so g is a rotation.

If j = 1, then if g*(v) = v, then g interchanges v and another adjacent vertex, so ¢
must be an inversion. If g?(v) # v then let v be a geodesic,

Y=...,0_2,U_1,0U0,0U1,V2,...,

where v, = ¢"(v). Then ¢(¢"(v)) = ¢"*t'(v), so g is a translation of step 1 along ~.

If j > 2 then let [v,g9(v)] = v,v1,...,vj-1,9(v). We note that g(v1) # v;_1, since
dy(v1,vj_1) = 7 — 2 < j. We can now extend [v,g(v)] by letting v;4r = g(vi) for all k.
v;j and vj4; are adjacent for all n since ¢ is an automorphism, and v; # vj49 since g is
bijective, so

Y=, Uo2,021,00, V1,02, . ..y 01, (V) Vj41, . ..
is a geodesic for which g(v,) = v,4;. So g is a translation of step j along .
So we have our result. |

Note another result undelies the case 57 > 2.
Lemma 1.5.3 Let g be an automorphism, and v a vertex. Let

0,01, Ve, 9(0) = [0, 9(v)]

be the chain joining v and g(v). If g(v1) # vn_1, then g is a translation of step n along
a doubly infinite chain of which [v, g(v)] is a subchain.

Proof:
This is proved by extending the chain [v, g(v)] exactly as for the case j > 2 above.
For a full proof, see Figa-Talamanca [4, I, §3, p10]. [ |

For a homogeneous tree of order > 2 there are always all three types of automor-
phisms, however this is not the case for other types of trees. Any finite tree cannot have
translations, since there are no infinite geodesics, thus the only possible automorphisms
of a finite tree are rotations and inversions. Also, for any automorphism, ¢, the valence
of v and the valence of g(v) must be the same, so in any tree for which there are no
two adjacent vertices with the same valence, there are no inversions, and all translations
must have step > 2. So a semi-homogeneous tree has only rotations and translations of
even step, since translations of odd step would map vertices of different valencies onto
each other.

It is also worthwhile noting that the type of automorphism is preserved under conju-
gacy, ie. gg'g™! is of the same type as ¢'.

Also, clearly if ¢ is a translation of step j along a geodesic ~, then ¢” is a translation
of step |nj| along ~.

Proposition 1.5.4 Given a tree, I' = (V, E), we have:

i. The composition of two inversions on distinct edges is a translation of even step.



Figure 1.6: Diagram for Proposition

The composition of an inversion about an edge and a rotation which does not fix
both wvertices of the edge is a translation of odd step on a geodesic containing that
edge.

Proof:

1.

il.

Let h and g be inversions on the distinct edges z = {v,u} and y = {w,z}, ie.

dg(z,y) # 0. See Figure 1.6.

If dg(z,y) = 1, then the two edges have 1 point in common. Without loss of
generality, let u = w, so gh(v) = g(u) = z and gh(u) = g(v) # u, so gh is a
translation of step 2, by Lemma 1.5.3.

If dg(z,y) = n > 2, then without loss of generality let [u, w] C [v, 2], so dy(u,w) =

n—1. Thus g(u) & [u, z] and g(v) € [u, g(u)], so v € [v, gh(v)] but gh(u) & [v, g(v)]
so by Lemma 1.5.3, gh is a translation. Finally, dv (v, gh(v)) = dv(v,u)+dy (u, w)+
dy(w,z)+ dy(z,9(a)) = 2n, so the translation is of even step.

Let g be a rotation about v and h an inversion on {u,w}. See Figure 1.6.

If g(u) = u but g(w) # w, then gh(w) = g(u) = u but gh(u) = g(w) # w so gh is
a translation of step 1.

If g(u) # v and g(w) # w, then let z be a point such that ¢g(z) = z and that dy(z,u)
is minimum. Without loss of generality, we assume that dy(z,w) = dy(z,u) + 1.
Then dy(gh(w),w) = dy(gh(w),u) + 1 = 2dy(z,u) + 1 and gh(u) = g(w) ¢
[gh(w), w] = [g(u),w], so again by Lemma 1.5.3, gh is a translation of odd step.



1.6 The Automorphism Group of a Tree

Having investigated the properties of the automorphisms, we now turn to look at the
properties of the automorphism group of I' = (V, E), which we denote by Aut(I'). As we
proved in Section 1.5, this group is the same as the group of isometries.

We can turn Aut(I') into a topological group via the compact open topology:

Proposition 1.6.1 Given g € Aut(l'), and F C V', with F finite, then let
Ur(g) = {h € Aut(l') : g(z) = h(z), YV z € F'}
i. These Up, together with @ and Aut(l') form a basis for a topology 7 on Aut(I').
ii. The group operations of Aut(I') are continuous with respect to .

Proof:

i. To show that this is a base, all we need show is that intersections of these sets are
some union of elements of the base. Intersections with @ and Aut(I") satisfy this
condition trivially.

So given two finite subsets of V', F' and H,
Ur(f) N Un(h) = {g € Aut(') : g(z) = f(z), Yz € F, and g(y) = h(y), Vy € H}

If Up(f) N Ug(h) = O, then we are done, so we can assume that there exists some

r € Up(f)NUg(h). Then

Ur(f) N Un(h)

{g € Aul(T) : g(x)

f(z) =r(z), Vo € F,

and g(y) = h(y) =r(y), Vy € H}
— {geAut(l): g(z) = r(z), Vo € FUH}
= Upun(r)

ii. Let (ga, fn) be a net, A € (D, =) which converges to (g, f) in Aut(I') x Aut(T).
That is, given any neighbourhood U of (g, f), there exists some residual W C D
such that (gx, fn) € U for all A € W.

Now given any finite subset H of V, we consider the neighbourhood Ujs-15(g) %
Us—ig(f), so for all X € W, (gx, fr) € Us—1u(g) X Us=1g(f). Therefore,

N(w) = f(u) Vue [TTH
= 1() = [(v) Vve H
v “(v)), VveH
(

= o) =g

since f~!(v) € f~'H.

Thus grfy' € Un(gf™"), VA € W. Since Uy (gf~") is a neighbourhood base about
gf~', we have that g\ fy' converges to gf~.

This means that (g, f) — ¢f~"' is continuous, which gives the continuity of the
group operations.



It is worthwhile noting here that the Up are subgroups of Aut(T').
This topology has several properties, the most important of which is that it is locally
compact.

Definition 1.6.1 A lopological group is locally compact if there exists a compact base
at the identity.

Before we can prove local compactness we need the following result:
Theorem 1.6.2 For all v € V, the stabiliser of v in Aut(T'),
Ky = Ugy(e) = {g € Aut(T) - g(v) = v}
15 compact.

Proof:

Every ¢ € K, gives a permutation on the set dB,(n), for all n > 1, since g is an
isometry.

So K, acts as a subgroup of the symmetric group on B,(n), S(r,) where r,, = |B,(n)|,
so we have a homomorphism «,, : K, — S(r,).

Now we consider the set [[ S(r,). By Tychanoff’s theorem, it is compact, since it
is a product of finite (and therefore compact) sets. We can map K, into [], S(r,) by
the map a: g — (a1(g), @2(g),...). a is continuous, since 7, 0 @ = a,, where 7, is the
projection from [], S(r,) onto S(r,), and the «,, are continuous. This follows from the
fact that the topology on S(r,) is the discrete topology, so we need only worry about the
inverse image of some element s of S(r,,). If s ¢ the image of K, then the inverse image
is the empty set, so let ¢ € K, be such that a,(g) = s. Then o, '(s) = Ug,(n)(g) N K,,
which 1s open.

Furthermore, « is clearly injective, since if two automorphisms map onto exactly the
same element of [ S(r,), they have exactly the same action on I', and so they must be
identical.

If g is in the complement of k, then for some n, and for some v1,v2 € dB,(n) we have
g(v1) = vy but the element there is some v € [v, v1] with dy (v, v3) = m such that g(vs) is
not the element of [v, vy] of distance m from v. For a fixed n, the set of such g is clearly
open, so the union over all n is also open. Thus the image of K, is closed and therefore
compact and hence K, is itself compact. [ |

Corollary 1.6.3 Aut(I") is locally compact.

Proof:
The sets Ur(e) form a neighbourhood base at e. But Ur(e) = (,op Ky is compact,
since K, is compact for all v. [ |

This means that Aut(I') has a Haar measure defined on it (See section 2.1), and so
we may hope to get information about the group’s representations from this. We do this
in Chapter 2.

Example 1.6.1 Let I' be the homogeneous tree of order 2, which we will label as follows:



-—— - = O o - - - -
V_9 UV_1 Vo U1 (%]

Clearly K,, = Z,. There s only one possible inversion on an edge, and the set of

translations is isomorphic to Z.
By Proposition 1.5.4(i), we can generate all translations of even step and all inver-
sions via two inversions on adjacent edges. Thus we have that this subgroup N of Aut(I")

is isomorphic to the group
<{a,b} |a* = =e> =Zyx 7y

This subgroup is normal, since if g is an inversion or even step translation, then hgh™!
is of exactly the same type, ie. is still in this subgroup.

K,, NN = e and since the product of a rotation and an inversion on a distincl edge,
by Proposition 1.5.4(ii) is a translation of odd step, we get that K,, N = Aut(I'). Thus
Aut(I') is the internal semidirect product of K,, and N.

So, Aut(l') = (Zy * Zy) ><Z5.

In general, the structure is not quite so nice, as we will see in Section 1.8.

1.7 Point Stabiliser Subgroups, K,

We now investigate some of the properties of K.

Proposition 1.7.1 If K, and K, are a poinl stabiliser subgroup then
i. Forall g € Aut(T), gK,¢7' = K, where u = g(v).
it. K, is totally disconnected.

iii. If I' is homogeneous of order ¢ + 1, then if dy(v,u) = n then K, N K, has index
po(u) = (g+1)g" " in K,.

Proof:
i. Let u=g(v). If k € K, then k(v) = v, so
gkg~ (u) = gkg™"g(v) = gk(v) = g(v) = u
so gkg~' € K,. Therefore K, C gK,g~".
If k' € K, then ¥'(u) = u, so
97 Kg(v) =g kg9~ (u) = g7k (u) = g7 (u) = v

so k' € g7'K,g, and thus K, = gK,g7'.



ii. Let g,h € K,, with ¢ # h. Thus there is some vertex u such that g(u) # h(u). Now

for any k ¢ U{uu}(g), U{%u}(g) N U{uu}(f) = ), since if I(u) = k(u), {(u) # g(u).
Thus Ugyuy(g) N UfséU{v () Upp,uy(f) = ©. Furthermore any [ € K, is either in

Ugpa(g) or Ung{v (o) Uvy (f) so we have K, as a disjoint union of open sets.
Furthermore h € Ung{v 1 (9) U{U,u}(f)'

Thus given any two automorphisms, we can find two disjoint open sets which cover
all of K,. Thus K, is totally disconnected.

iii. For each w € dB,(n), choose g, € K, such that g,(w) = u. Such a g, exists
because I' is homogeneous. Then K, = UwE@BU(n) gw(K, N K,), and the cosets
9w (K, N K,) are distinct. Since |0B,(n)| = (¢ + 1)¢"*' = p,(u), we are done.

Part (iii) of the proof above can be generalised to any tree where the valence of any
vertex u is only a function of dy (v, u).

We now want to get a better hold on the structure of the point stabiliser subgroups.

Let I' be homogeneous of order ¢+ 1. Choose some 0 € V. Let K be the restriction
of K, to B,(r). We note that K! = S(g+ 1). Then for r > 2, as sets,

K] = KI7' x (5(q) x -+ x S(q))

t times

where ¢ = [0B,(r — 1)| = (¢ + 1)¢"~2, since any given element of K? when restricted
to B,(r — 1) is an element of K7~ and each of the S(q) describes the restriction of K
when restricted to the sets W, = {v € 9B,(r) : dy(v,u) = 1} where u € dB,(r —1). See
Figure 1.7.

So we can clearly embed K!™' in K! via the map « : K!™' — K! where a(k) =
(k,(1,...,1)), and we can embed N = S(q) x --- x S(q) in K via the map f: N — K],
where B(s1,...,8:) = (1,(s1,...,5)). Clearly NN K!™' = e and we can clearly express
every element of K’ as a product of an element of K”~! and an element of N, by the
previous paragraph.

Furthermore, N is normal, since we note that N is exactly the vertex stabiliser of
B,(r —1), and k(s1,...,5)k™ (Bo(r — 1)) = kk™'(B,(r — 1)) = B,(r — 1).

Hence KI™' = K77 'p< N.

Now given any element of ¢ € K, we can describe it uniquely by its action for each
r on B,(r), so we can write ¢ = (kq,kq,...), but we note that we must have that the
restriction of ki1 to B,(z) must be the same as the restriction of g to B, ().

So K, can be represented as the subset of [[Z, K such that if g = (k1, ko, ...) € Ko,
then ki+1|Bo(i) = kZ

Note that this means that as sets,

K,=5(qg+1)x5(q) x S(q) x---

which can be used to give more concretely that K, is compact.

Although the above discussion holds for homogeneous trees, it can be generalised to
K1 = Ur(e) for any tree I', and for any finite subtree T'. In this case the sets which are
acted upon by K7 are T, = {v € V : 3 u € T where dy(v,u) < r} (see Section 1.3),
K} may be a product of symmetric groups, one for each orbit of K7 on Tj, and the



Figure 1.7: Restrictions of K

permutation groups also become products of symmetric groups, one for each orbit of Kr
on W, ={veTl,\T,_1:dv(v,u) =1} where v € T,_1 \ T,. (Note that here we define
T_1 - aT)

1.8 Faithful Transitive Subgroups

We now look at a class of discrete subgroups of Aut(I'), where I' is homogeneous of order
¢+ 1, in an attempt to get a better hold on the structure of Aut(I").

Definition 1.8.1 We say that a subgroup F' of Aut(l') is a faithful transitive subgroup
if for every u,v € V, there is a f € F such that f(u) = v (transitivity), and if FNK, = e
forallveV.

We note that if F'is a faithful transitive subgroup of Aut(I'), then if we choose some
vertex o, then the map f — fois a bijection, ie. there is a direct correspondence between
elements of F' and elements of V. Also F'is discrete in Aut(I'), sinceif g, f € F', go = fo,
then ¢7' fo = o, thus ¢7' f = €, s0 g = f, which means U,(f) N F = f.

If ' is not homogeneous, then it is impossible for a group to be transitive in this
sense, but it is possible to generalise and get a meaningful definition (see Section 1.9).

We can actually get a characterisation of all faithful transitive subgroups of Aut(I),
but we need the following lemma.

Lemma 1.8.1 Given a vertex o € V and a set A C Aut(I") such that |[A|=q+1 and

i. A= A1



then

Ao) ={alo): a € A} = 0B,(1)

. given a finite sequence as, ..., a, of elements of A, then dy(o,a1...a,(0)) < n.

given any vertex v € V, with dy(v,0) = n, it is possible to find a unique finite

sequence of n elements a1, ...,a, of A such that ay...a,(0) = v, and for this
sequence a;a;41 # e, forv=1,...,n—1.
Proof:

1.

il.

We use induction on n.
If n =1, the result is true by assumption.

If the result is true for n = k, then given ay,...,a;41 € A, then
dv(o,a1...ap41(0)) = dy(a™"(0),az...a41(0))
since aq is an isometry. But

dv(a™',0) +dy(o,a;...a41(0))
1+ k

dv(a™"(0),az...ars1(0))

IA A

So the result is true for k£ + 1.

We note first that since |[A| = ¢+ 1 and [0B,(1)| = ¢ + 1, the second condition on
A implies that if a,b € A and a(o) = b(0), then @ = b. Thus for each u € dB,(1),

there is a unique a € A such that a(0) = u.
Again, we use induction on n.
If n = 1, existance is true by assumption, and uniqueness follows from above.

If the result is true for n = k, then given v € V with dy(o,v) = k + 1, let
[0,v] = vg,...,vr41 be the chain between o and v. Then there is a sequence
ai,...,a such that ay...ax(0) = vg, with a;a;41 # e, for i =1,...,k —1. Now
dv(o,(ay...ar) " (v)) = dv(vk,v) = 1 since each a; is an isometry. So there is a
unique a € A such that a(o) = (ay...ax) ' (v), therefore a; ...ara(0) = v, and
furthermore, aza # e, since then v = a; ...aa(0) = ay...ax-1(0), and by part (i),
dy(o,v) =dy(0,a1...a5-1(0)) < k — 1, which is a contradiction.

So the result is true for k£ + 1.

Sets of the form of A are easy to find, for instance, a set of inversions, one inverting

each edge radiating from o will do. Alternatively, two inversions could be replaced by a
step 1 translation and the corresponding step 1 translation in the other direction along
the same geodesic.

The above lemma leads to the following classification theorem for faithful transitive
subgroups.



Theorem 1.8.2 Let A be a subset of Aut(I') as above. Then A generales a faithful
transitive subgroup F' of Aut(I"). Furthermore F is isomorphic to the free product of Fj
and t copies of Zy, and these are the only faithful transitive subgroups.

Proof:

Every element a of A must either be an inversion or a step one translation, by the
following argument: If a is a rotation, then dy (v, a(v)) must be even, so dy (o0, a(0)) # 1.
If a is a translation of step ;7 > 2, then by the proof of Theorem 1.5.2, the minimum
distance between any two vertices is j, so dy(0,a(0)) # 1. Thus @ must either be a step
one translation or an inversion. It is an inversion iff a* = e.

Let {b1,...,b;} be the subset of A of inversions, and let {byt1, ..., bgs, b3, - - -, b}
be the step one translations. So elements of the subgroup F' of Aut(I') generated by A
are all words consisting of elements of A where no two adjacent elements are inverses, so

Fe<A|b =e=byb )}, Vi=1,....t,j=1,...,5>

IYt+50

so the bt_-|—117 ey b;}s are clearly redundant, and we can instead write
F= < {bla'--abt-l—s} | 622267 VZ:1,,t>

which is exactly the definition of the free product of the free group on s symbols with ¢
copies of Z, ie.

FeLl,xZy*x---x71,
—_——

t times

(See Theorem 1.2.2).

F'is clearly transitive by part (ii) of the previous Lemma, and F' is faithful by the
uniqueness condition from part (ii), since if fg(v) = v, then there is some h such that
fgh(o) = h(o) by part (ii), and this implies that gh(o) = f~'h(o), which by uniquness
means ¢ = 1, so there are no rotations other than e.

Finally, if F' is a faithful transitive subgroup, then choose some vertex o € V., and
let A = {g € F: glo) € 0B,(1)}, ie. A(o) = 0B,(n). Then since F' is faithful,
|A| = |0B,(1)] = ¢ + 1. Furthermore, since dy(o,g7'(0)) = dv(g(0),0) = 1, then
gt €A so A= A1, and thus A fits the hypothesis. Therefore A generates a faithful
transitive subgroup, and this must be exactly the original subgroup F' [ |

Note that this result means that the faithful transitive subgroups of a homogeneous
tree I' are exactly the groups which have I' as their Cayley graph (see Theorem 1.2.2).

We now hope to use this subgroup along with the point stabilisers, to get additional
information about the structure of Aut(I'). We might hope that since F N K, = e,
and by Example 1.6.1 that we might be able to form the semidirect product of the two
subgroups and get the whole automorphism group. Unfortunately, F' is not, in general,
normal. However, we do have the following.

Proposition 1.8.3 Aut(l') = K, F = F'K, and furthermore if g = fik1 = kafs, k1, ks €
K,, f1,f2 € F, then ky, f1, ks, fo are unique.

Proof:
Let ¢ € Aut(I'). Then there exists a unique f; € F' such that fi(o) = g(0), so there
is a unique k; € K, such that k; = f;'g, since f;'g(0) = o, and hence g = fik;.



Similarly there is some vertex v such that g(v) = o, so there is a unique f; € F' such
that fa(v) = o. So there is a unique ky = gf;' € K,, since gf;'(0) = g(v) = o, and
hence g = ks f5 [ |

This means that, as sets, Aut(I') = F' x K, = K, x F, which allows is to prove that
the Haar measure on Aut(I') is unimodular (see section 2.1).

1.9 Extensions and Generalisations

In this section we deal with some related topics to those we have already discussed.

Unimodular Subgroups of Aut(I')

Although we have not yet defined unimodularity, now is an appropriate time to discuss
what conditions might lead to unimodularity. If the reader is unfamiliar with the concept
of unimodularity, then the appropriate definitions may be found in Section 2.1.

As we will see, if we want to perform harmonic analysis on a group which acts on a
tree, it is critical that the above Proposition holds, since it is by this that we will prove
unimodularity.

To retain the subgroup as being locally compact it has to be a closed subgroup, so
only those which are closed need to be considered.

If we want unimodularity, by the method given here, then we must be able to write
the subgroup G of Aut(I') as a product of a compact subgroup K of Aut(I') and a faithful
transitive subgroup F.

However, this is not the only way of showing unimodularity. Figa-Talamanca [4] uses
the idea of Gelfand pairs to show unimodularity. It turns out that it is sufficient to show
that a group is both transitive on the vertices of I' and on its boundary 2 to show that
the group is unimodular.

Clearly these sorts of conditions fall far short of being neccessary, since any compact
subgroup of Aut(I') is unimodular simply by virtue of being compact. In particular
the point stabiliser subgroups K,, and more generally K7 are unimodular, but they are
clearly neither contain faithful transitive subgroups, nor are they transitive on vertices
and even in the case of K1 neccesarily, they are not neccesarily even transitive on (.

The Explicit Structure of a Group Acting on Tree

It is possible to get hold of the structure of a general group acting on a tree. These
results come from Serre [11].
We begin with the following definition.

Definition 1.9.1 Given a tree I' = (V, E), and a subgroup G' of Aut(I'), then we define

i. The quotient graph I'/G = (U, D), where U is the set of orbits of G in V and D is
the set of orbits of G in K, and an element a of U is the endpoint of an element b
in D if there is some vertex v in a such that it is the endpoint of some y in b.

it. A tree of representatives of the quotient graph is a subtree T' of I' such that T and
I'/G are isomorphic.



Example 1.9.1 If ' is the semihomogeneous tree of order (¢ + 1,7 + 1), then V has
two orbits under the action of Aut(l'): the vertices of order ¢ + 1, and the vertices of
order r + 1, and F has one orbit. Thus the quotient graph is a single edge and ils two
endpoints.

Therefore any edge of I' and its endpoints is a tree of representatives.

Note that there is no reason why a tree of representatives must exist, however if
contains no inversions, then I'/G is a tree, and there must be a tree of representatives
(see Serre [11, §3.1, p25]).

The fact the G must contain no inversions, as it turns out, is not a major problem,
since if we take the barycentric subdivision of I'; G has a well defined action on I'" which
is inversion free. We map each g € G to ¢’ € Aut(1”), where ¢'(v) = ¢g(v), for v € V and
g (y) =g {u,v})={g(u),g(v)}, for y = {u,v} € E. The fact this is inverse free is clear
since if ¢ is an inversion on I', then g stabilises some edge y, and so ¢’ is a rotation about
the corresponding vertex of IV, (In fact it can be shown, that if I" is not the homogeneous
tree of order 2, then Aut(I') = Aut(I")).

Serre shows that it is possible to derive the structure of many groups from their actions
on a tree, however the simplest example is the case when the tree of representatives is an
edge y = {u,v}, then G = K, x, K, the amalgamated product of the point stabilisers of
u and v amalgamated over the point stabiliser of y, that is the {g € G : gv = v, gu = u}.
There are more general results, however they are outside the scope of this thesis.



Chapter 2

Representations of Groups on a Tree

In this chapter we develop some initial theory concerning harmonic analysis and repre-
sentations, before setting out to classify and identify the irreducible representations of
Aut(I"). After the initial sections, we essentially follow chapter 111 of Figa-Talamanca [4].

2.1 Haar Measures

Most of the following section, except that dealing specifically with groups acting on trees,
can be found in any good book on Harmonic Analysis. In particular, the proofs of the
general theorems can be found in Halmos [6].

We begin by producing a particularly nice measure on a topological group.

Theorem 2.1.1 (Haar, Von Neumann) Given a locally compact group G, with Borel
sets B there exvists a Borel measure p on GG, with the following properties:

i. If V.# 0 is open, then p(V) > 0.
ii. There exists an open set V with p(V) < oco.

wi. If X € B, then
p(gX) =p(X), Vged.

(ie. p is left invariant ).

. p is regular, that is p(F) = inf{u(V) : £ C V, V open} and p(E) = sup{p(C) :
C C E, C compact}

Such a measure is called a left Haar measure and ts unique up to a multiplicative con-
stant, that is if p and v are both left Haar measures, then for some ¢ € Ry, u(X) =
ev(X), VXeB

Similarly, there exists a right Haar measure on G.

(Existence is due to Haar, and uniqueness due to Von Neumann).

Proof: See Halmos [6, XI; §58,60].

Example 2.1.1 The following are some examples of Haar measures.

i. On R,+ the Lebesque measure is both a left and right Haar measure.



1. On Z,+ the counting measure is both a left and right Haar measure.
iii. If G is compact, then p(G) < oo, so we can normalise the measure so that u(G) = 1.

. Similarly, if G is discrete, then we can normalise the measure by setting p({e}) =1,
making p the counting measure on G.

v. Given two locally compact groups G and Gy, with Haar measures py and po, then
we can define py X po on G X Gy. This measure is a Haar measure on Gy x Gy.

vi. If G has finite Haar measure and H is a closed normal subgroup, then G/H is a
locally compact group and has Haar measure o 0~' where § : G — G/H 1is the
quolient map.

vit. If H is a subgroup of G, such that u(H) > 0, then the restriction of y to H is a
Haar measure on H.

A natural question arises: When is the Haar measure both left and right invariant?
That is, when is it bi-invariant? If this occurs, we call the group unimodular.

Proposition 2.1.2 The following groups are unimodular:
i. All locally compact Abelian groups.
it. All compact groups.
it All discrete groups.

Proof: See Rieter [9, I1I, §3.5-6, p62].

Proposition 2.1.3 Aut(I') is unimodular.

Proof:

Since each element of Aut(I') can be expressed uniquely as a product of an element of
K, and an element of F', a faithful transitive subgroup, Aut(l') & K, x F' as topological
spaces. Let g be right-invariant Haar measure on Aut(I'). Choose some v € V, since K,
is compact p(K,) < oo, so we shall normalise p so that p(K,) = 1.

Then p, = p restricted to K, is a Haar measure on K, since K, is an open subgroup
of Aut(T"). Since K, N K, has index (¢+ 1)¢"~ " in K, where dy(u,v) =n, u(K,NK,) =
o (K N K) = W

Furthermore, the measures on each of the K, are essentially identical, since for £ C
Ky, pio(E) = po(fTUES), as follows. pu,(f~'.f) is certainly a measure on Ky,. For all
ke Ky,

wo(fTYRES) = w(fTRffTIES)
= w(fT'Ef)



since f~'kf € K, and p, is a bi-invariant Haar measure. Thus p,(f~'.f) is a Haar

measure, so i, ([T Ef) = cusp(E). But

po(f7HEL N K p)f)

,ufU(KU N ](fu)

o (Kp-1, N Ky)
1
(¢+1)g""
p(Ky, N Kyy)
o (K, N Kyy)
1
(¢+1)g"

Since if dy (v, fv) = n, then dy(v, f~'v) = n also. Therefore ¢ = 1, and we have our

result.

Given E € Aut(I'), F Borel, then we define for each v € V, f € F, E¢(u)

(ENK,f)f~" C K,. Intuitively, this is “slicing” F into sections, one for each coset of
K, and then pulling these back to K,. Therefore F is the disjoint union of F¢(u)f as f
varies over I, ie. K = UfeF FE¢(u)f. Now since F'is countable, we have

n(E)

for any u € V.

> n(Esf)

feF

> u(Ey)

feF

>l Ey)

feF

Now we are in a position to prove unimodularity. Let £ C Aut(I'), £ Borel.

Let k € K, then

p(kE)
feF

fEF

Let h € F', then

p(hE)

> ml
>l

(kE)s(v))
(kEN K, f)f™)

(BN K, f)f™)



= > wm((hRENK,)f™)

feF
= S B AR
feF
= > (BT R(ENET K f) f )
fer
= > - (EORT KRR f7 )
feF
= > (B0 K1 k7 f) f71R)
feF
= Y (BN Ky,9)g7")
gEF
= S (B ()
gEF
= u(E)
And since any element of Aut(I') can be expressed as a product of elements from
these two sets, we are done. [ |

From this proof we know that u(K,) = p(K,) < oo for all u,v € V, so we can
normalise the Haar measure in such a way that u(K,) = 1, for all v € V. We will assume
that this normalisation has taken place.

2.2 Representations

In this section we explore some general ideas from representation theory.

Definition 2.2.1 Given a group G,
A representation © of G is @ homomorphism from GG to the group of linear operators
on some Hilbert Space H,, te. ¥ g, h € G we have

w(g)x(h) = =(gh)
m(g™") = 7)™
In addition, we require that ¥V &,n € H,, (x(g)&,n) is continuous as a function of g.

A representation is unitary if x(g) is a unitary operator for all g € G. (Recall
that an operator U on H, is uniltary if U* = U™, where U* is the operator such that
(U&m) =(&U™n), ¥V &n € Ha).

A representation isirreducible if there is no nontrivial closed subspace of H, invariant
under the action of ©. ie. the closed span of {m(g)é:9 € G} is H,, V& € H,.

A representation is faithful if it is injective.

Two representations m and ¢ are (unitarily) equivalent if there exists a surjective
linear isometry U : H, — Hy such that Un(g) = ¢(g)U for all g € G.

Given two representations © and ¢, we define their direct sum 7 & p to be the repre-

sentation from G — H, & Hy defined by (7 & p)(g) = (7(g9), p(g)).

For the rest of this section we will assume that G is unimodular and that all repre-
sentations will unitary.
There are two representations which should be introduced immediately.



Definition 2.2.2 The left regular representation A on a locally compact group G, with
Haar measure y, is a representation on Hy = L*(G, u) defined by

Mg)f(k) = f(g™"k)

where g,k € G, [ € L*(G).
The right regular representation p is defined similarly, but with

p(9)f(k) = [(kg)

There is also a class of representations that we will need to know more about. This
section comes from Dixmier [2].

Definition 2.2.3 A representation © is square integrable iof 3¢ € H,, with & # 0, such
that g — (m(g)&,€) is in L*(G).

Proposition 2.2.1 If 7 is an irreducible square inlegrable representation, then

i. The coordinate functions t¢, : g — (7(g)&,v) are L? for all {,v € H,.

11. There exists a number d,, 0 < d, < oo, such that

[ teololiewta) dutg) = S5

We call d,. the formal dimension of 7.

Proof: See Dixmier [2, p278-282].
Now if we fix vg, where ||1p]|> = 1 and set (U&)(g) = v/dxte,(g), then from the above

propsition,
i. Ut e L*

ii. U is an isometry from H, to L?, since

(U&,UE) = dr

iii. U inlertwines = and p as follows:

(Ur(9)&)(h) = Vdu(x(h)7(9)¢, v0)
(U

This means that 7 is unitarily equivalent to some subrepresentation of p.

It is also possible to define a function s¢, : ¢ — (£, 7(g)v), in which case corresponding
results give that # and A can be intertwined, and that = is also unitarily equivalent to a
subrepresentation of A.



This means that given any irreducible square integrable representation = on H, we
can consider H, as a subspace of L? and 7 as the left (or right) regular representation
restricted to this subset.

We also need the concept of induced representations. The following comes from Figa-
Talamanca [4, 111, §3, p132]. It concerns only the special case of induced representations
of unimodular, separable, locally compact groups and compact open subgroups.

Let G be a unimodular, separable, locally compact group, and K a compact open
subgroup of (G. Let ¢ be a unitary representation on K.

Definition 2.2.4 Let S7 be the space of functions f: G — H, such that
i. f(gh)=0c(h™)f(g) for ever g€ G and h € K.

ii. Jo I/ (9)II* dg < oo

This gives us that

/G @I dg = u(K) S (@)

zeG[K

and 57 is a Hilbert space with inner product

(f.g) = / (f(2),g()) de

S7 is invariant under left translation, so we can define a left regular representation of
G on 57, which we denote Ind(c), that is

Definition 2.2.5 We define the induced representation of o to be
Ind(o)(2) (1) = (=1

Two representations o and o, are unitarily equivalent, iff their induced representa-
tions are also unitarily equivalent.

Also given two representations oy and o3, we have that Ind(oy & o3) is unitarily
equivalent to Ind(oq) @ Ind(oz).

The if o is square integrable, so is Indo, and the formal dimension of Ind(o) is
dim(o)/p(K).

If S% is the subspace of S7 of functions supported on K, then S% is a closed non-
trivial subspace of S?. If we define for £ € H, the functions f; where f¢(z) = o(z™')¢
for z € K and fe(x) = 0 otherwise, then the map & — f¢ is an isomorphism of H, onto

K-

Thus any function in 7 with compact support is a linear combination of left translates

of functions in S%, and the subspace of S7 generated by UgeG A(g)S% is dense in S°.

Proposition 2.2.2 If o is a unitary irreducible representation of K, then Ind(o) is

irreducible iff every closed non-trivial invariant subspace of S° contains a non-trivial
function of S%.

Proof: See Theorem 3.13 of Figa-Talamanca [4, 111, §3, p134].



2.3 Representations of Aut(T)

We now seek to classify all irreducible representations of Aut(I'), and develop some tools
to help deal with them.

If K is a compact subgroup of Aut(I') with normalised Haar measure px, then given
a unitary representation 7 on H,, we fix some ¢ € H,, and define a map

n [ (x(k)én) dux(k)

K
This map is bounded conjugate linear map, so by the Riesz representation theorem,
there exists some ¢’ € H, such that this map is

v (¢ v)
¢ depends on ¢ in a bounded linear fashion, and hence ¢’ is of the form P.(K)¢ for
some linear operator P,(K). Furthermore, P,(K) is bounded, since

[{(Pr(EK)Em)| - < I,|<7T(K)fa’7>|dﬂh’(k)
< &l linll

So | P-(K)|| €1, and clearly now

(Po(K)En) = [ (m( e du ()
This leads to the following proposition:

Proposition 2.3.1 For such a P,(K) we have:
i. Given k € K, we have n(k)Po(K) = P,(K).
i, If m(k){ =¢& VkeK, then P,(K){ =¢.

iii. P,(K) is the orthogonal projection onto the space of w(k)-invariant vectors.

Proof:

i. For all £&,n € H,,

.

~(K)E m(9)™n)
(w ()€, m(g)™n)dk

(m(g)Pr(K)Em) =

I
—

(w(g)m (k)& n)dk

Il

(m(gk)¢, n)dk

= [ (x(K)¢,m)dk’
(K)¢m)

I
—

Py

I
o



ii. For all n € H,,

(P(K)En) = [ (rR)Ema

So P.(K)¢ =¢.
ili. Pr(K) is an orthogonal projection if P.(K)P.(K) = P.(K) and P,(K)* = P,(K).

This follows from (i) and (ii), since
(PAKIPAKIED) = [ (=(0) PR )

= [Pt
— (PA(K)E)

and

(Pr(K)&m) = (& Pr(K)n)

as required.
[ |

If 7" is a finite subtree of I', then let K7 be the subgroup of GG that fixes the points
of T') and let P.(T) = P,(Kr). P is well-defined, since K7 is the intersection of the
stabilisers of each of the vertices of T', and is thus the intersection of a finite number of
compact subgroups, and is so therefore itself compact. Similarly, since each of the point
stabiliser subgroups is open, K7 is open. In particular pg(Kr) > 0, so by the properties
of Haar measures,

1
- — / R (k)¢ dua(k)

Also, as T varies over all finite complete subtrees, the K7 form an open neighbourhood
basis of e. This gives us that for all ¢ € H,, £ # 0, there is a finite complete subtree T'
such that

Pr(T)¢

[ w0169 duey ) # 0



This follows since (7(g)&, &) is continuous in g, and

(m(e)¢,€) = (€. €) = [|&lI* #0

giving a real number ¢ such that 0 < ¢ < ||£]|?, so there is a finite complete subtree T' for
which 7(K7)é C{n e C : |n—||¢|]*| <&}, so Re(x(g)¢) > 0 for all g € K7, so

Re( [ (n(H€) duy (1) > 0

giving the result.
A direct consequence of this is that for each ¢ # 0, there is a tree T such that

PA(T)¢ # 0.

Thus we can make the following definitions:

Definition 2.3.1 Lel 7 be an irreducible unitary representation of G. Then there is some
largest positive integer L, such that if T' is a finite complete subtree for which P.(T) # 0
then £, < the number of vertices of T'.

If £, =1 then 7 is called spherical.

If £, =2 then w is called special.

If . > 2 then 7w is called cuspidal.

A finite complete subtree T with {, vertices, for which P,(T) # 0 is called a minimal
tree of 7.

We note that if T is a minimal tree, then ¢7 is also a minimal tree for all ¢ € G,
since Pr(gT) = 7(g)P(T)7(g)~" # 0, and the number of vertices is clearly the same.

Definition 2.3.2 If T is any complele finite subtree, then we define
i. H.(T) to be the space of all Kr-invariant vectors, ie. H,(T') is the range of P,(T).
ii. Vi to be the union over all finite complete subtrees T of the H.(T).

It is easy to show (Figa-Talamanca [4, III, §1, p106]) that V is dense in H,, even if
7 1s not irreducible.

Let 7 be a unitary representation, and let T' be a subtree of ©# with ¢, vertices. Thus
if T° is a proper complete subtree of T', then P.(7°)¢ = 0, for every ¢ € H,. Thus if
&,n € Ve and P& = ¢, then the coefficient function u(g) = (x(g)&,n) has the following
properties:

i, u(gk) = (v(g)x(k)¢,n) for all k € Kr.

ii. There is a finite complete subtree 7" such that u(kg) = (x(g9)¢, 7(k~")n) for all
k € Kr.. (1" is any subtree for which P.(T")n = n).

iii. If 7° is a proper complete subtree of T', then

1

1o (Kre) / u(gk) dpu (k) = (P<(T°)&,7(g™")n) = 0

for all g € G.

To study the coefficient functions more closely, we generalise the notion as follows:



Definition 2.3.3 Let T' be a complete finite subtree of I'. We let S(T') be the linear
space of continuous functions u satisfying the following properties:

. u is right-Kr-invariant.
1. u is left-Kr, -tnvariant for some finite complete subtree T, dependant on u.

iti. for every proper complete subtree T° C T

[ ulgh) duati) =0
Ko
forall g€ G.

S(T) is G-left-invariant since, if v € S(T'), then for any ¢ € G, v(h) = u(gh) € S(T),

as

i. For all k € Kp, we have v(hk) = u(ghk) = u(gh) = v(h), since u is right- K-

invariant.

ii. Given k € K,-17,, we have v(kh) = u(gkh) = u(gg9~" fgh) = u(fgh) = u(gh) =
v(h), where f € Kg:. Thus v is left- K ,—14,-invariant.

iii. Given T° C T, h € Aut(l),
/ v(hk) duc(k) = / v(hk) duc(k)
Kro Ko

= [ ok dua()
-0 !

Thus if we could show that S(T') C L*(Aut(T')), S(T') would be an invariant subspace
for A

It is easy to see, using similar arguments to above, that under right multiplication by
g, S(T') becomes S(gT).

Now for a spherical representation =, if we consider S(v), where v is the minimal tree
for =, then condition (iii) becomes trivial, so it is difficult to use S(T') to extract any
information about =.

2.4 Special Representations

Let 7 be a special representation. Therefore all minimal trees of # must be edges. Let
y = {a,b} € F be an edge which is minimal for 7.

Proposition 2.4.1 If 7 is a special representation, then all edges y' = {a’, b’} € E are
minimal.



Figure 2.1: The Orientation F,

Proof:
If y is a minimal edge, then there is a ¢ € Aut(I') such that y' = gy. Thus P.(y') =

w(9)Pr(y)m(g~") # 0. |

Consider S(y). We can replace, for some n,, T, by B,(n,) which is the tree with
vertices {v € V : dy(v,w) < n, for some w € y} since for n, sufficiently large, T, C
By(ny), so Kp,(n,) € Kr,, giving the result. We will call this property (1).

Also remembering that S(y) is left invariant, we have, for all v € S(y) and for all
h,g € Aut(l),

/ u(h™kg) dk =0
Ka

0 = /u “1khf) d
_/hlh

= / u(kf) dk
Khq
We will call this property (2).
Now consider the following orientation of I'. We define F; to be the set of directed
edges such that a is a local source and b is a local sink, and the pattern repeats throughout
I'. This is best described by illustration: see Figure 2.1. We define E_ = F.

so, if we set ¢ = hf, then

>



Since Aut(I') acts transitively on directed edges, and K, stabilises [a, b], then we can
identify G/ K, with Fy U FE_ via the map « : g — [ga, gb]. So we define S to be the space
of functions defined by @ € S iff u(g) = t(a(g)).

Since any edge y’ € E has two directed edges associated with it, we define uy(y’) to
be the value of @ on the positively oriented component of y’, and u_(y’)to be the value
of @ on the negatively oriented component of y’.

We can now transfer the definition of S(y) across to S, and get the following Lemma,
however first we define N(a,z) = N, (a,z) where w is any infinite chain which starts
with [a, z].

Lemma 2.4.2 A function @ on EL U E_ is in S iff

i. There exists an n > 0 such that ¥V x such that dy(a,z) =n, then ui(y') and u_(y')
depend only on the distance of y' from a, dc({a},y’), for y' € N(a,z).

i. ForallveV, and m € N,

dc ({U},y'):m
and
Z ut(y’) =0
de({v}y')=m
Proof:

These two properties are essentially the translation of conditions (1) and (2) to S.

i. Property (1) gives us that u is left-Kp (,,)-invariant, and so @ must be constant
on the orbits of Kp,,,) on Fy U E_. However, the orbits of Kp (,,) are exactly
the edges in M (a, z) of a given distance and orientation from z € dB,(n,,), so they
must all have the same value. Thus the two conditions are equivalent.

ii. Property (2) gives, given some vertex v,

/I u(kf) dk =0

which translated to £y U E_ gives that the sum of @ within an orbit of K, must
be 0. The edges of a given distance and orientation from v are exactly these orbits.
So again the two conditions are equivalent.

Thus the lemma follows. [ |

From this we can see that each element of S is determined by its values on some finite
set of edges, since all the edges outside B,(n,) are determined by the values on dBy(n,).

More specifically, if y' € N(a,z) and uy({z,t}) = ¢ where [a,z] = a,...,t,x, and
de({z},y') = k, then ui(y') = (—1)k+1q%. A similarly result holds for u_. This result
can be proved inductively, by considering first the edges of distance 1 from z: the sum
on the positively oriented edges is 0, and since the ¢ edges in N(a,z) which have z as
an endpoint all have the same value, uy = —g. Repeating this process on all vertices of
a given distance from x proves the result.

Furthermore, we can show the following using this result.



Theorem 2.4.3 If i € S, then i € (*(Ey U E_) and unless i =0, @ ¢ (*(E, U E_).
This means that u € S(y) is in L*(Aut(T)), but not in L'(Aut(T')) unless u = 0.

Proof:
We first note that

Dl = D @+ D lu )
v v'eBy(n) v#By(na)

but 32 en,(n) |us(y")|* is a sum over a finite number of edges, and is hence finite. Now

Yool = Y Y > s () |*

V' By (nu) £€0By(n.) k=1 v/ €N (a.2) de({a}v)=k

_ - c(z) )
B I SR SR
z€dBy(nu) k=1 y'eN(a,z),dc({z}y')=k

o0

- ¥ |c<w>|22qkq%

z€IBy(ny)

=Y Py S

z€IBy(ny) q

2 4
= Z |C($)|qj

Thus
Y Jus (i) < 0
yl

a similar argument gives

D lu-(y)F < oc

and thus combining the two we get that @ is £2.

Assume that @ # 0. Then there must be some x € dBy(n,) such that uy({t,z}) #0
(or u_({t,z}) # 0; we will assume without loss of generality that it is uy), since if it
were, then % would have to be 0 everywhere. Thus the £! norm of % must be at least the
sum over the values of uy on the y’' € N(a,z), ie.

o0

lalt > ) > lur ()]

k=1 y'eN(a,z),dc({z},y")=k

- c(z)
> ) > vl
k=1 y'eN(a,z),dc({z},y")=k
> cl\x
L §e o)
k=1 q
>

> le(x)]

=



So therefore @ is £ iff @ = 0.
Finally we note that v € S(y) has L? norm equal to some multiple of the ¢* norm
of the corresponding , and similarly for L'. (This multiple, as it turns out is u(K,) =

qﬁ,u([(a) = qﬁ) Thus the results carry directly over into S(y). .

Proposition 2.4.4 The subspace of S(y) of all left-K, -invariant functions is a two di-
mensional subspace, and for every f in this subspace

1 = £ P + 1))

Proof:

Let M be our left- K-invariant subspace. If f € M, then f is constant on edges of
distance n from y. We note from above that this means that f is determined completely
by the values of fy and f_ on y.

More specifically, if fi(y) = ¢, then fi(y') = c(_Tl)dE(y’yl), and if f_(y) = d, then
uly!) = d(zh e,

Let ©; be the function which is 1 on the positively oriented component of y and 0
on F_, and let v be the function which is 0 on £y and 1 on the negatively oriented
component of y. Then for any f € M, [ = cv; + dvy. Thus {vy,v2} is a complete basis
for M.

Hence M is two dimensional.

Finally, from the above theorem, we can easily show that

SR = )P
y' el q
and 1
SR = 1)
y'€E q
Thus [|F13 = (1£+ ()P + 1/-0) ) 2L = (1)) + [/~()]P) as required. M

Note that in the context of S(y), this is saying that if v is in this subspace, then u is
determined by its value on the set of automorphisms which stabilise y as a set.

So we have that S(y) is indeed a subset of L*(Aut(I')), and as it is at least 2-
dimensional, it is non-trivial. Let M(y) be the closure of S(y) in L*(Aut(T)), so M(y)
is a closed, non-trivial, invariant subspace of A, (the left regular representation), harking
back to the fact that S(y) is left-invariant.

Proposition 2.4.5 M(y) can be identified with the subspace of (*(E, U E_) such that
forallv eV, and m € N,

and

(te. property (ii) of 3)



Proof:
It suffices to check that all functions with this property are in the closure of S.
Choose some f € % such that this holds. Then define the sequence {u,} C S(y) by
setting & = f on B,(n) and letting property (i) of S hold for @ with n, = n.
By similar arguments to the above Theorem and Lemma, it is possible to show that

1f = wall < p(K)(+ (g = D720 Y (WP + 1/-()17)
y'EBy(n)
which tends to 0 as n goes to infinity.
Thus f is the limit of the u,, and we are done. [ |

Let A, be the restriction of A to S(y). We note that since p(9)S(y) = S(gy), so
therefore p(g)M(y) = M(gy). Thus A, and A,, are unitarily equivalent.

Note that the bi-K,-invariant elements of M(y) are exactly the bi-K,-invariant ele-
ments of S(y), since if a function is both left- and right- K,-invariant, it must be in S(y),
by definition. Thus the subspace is still two dimensional.

In fact this space is exactly P\(y)(M(y)). Indeed, we can exactly specify the action
of P\(y) on M(y), since, for f € M(y), we have

(P = [ A0S db

= F(k~e) dk

Ky

= Flek™) dk

Ky

_ (e) dk, since f € M(y)

(o)

and if go 1s an inversion of y, then goy = ¥y, so we have

(P o0 = [ A ) b

= (k7 go) dk

Ky

= f(90h " g5 " g0) dh

Koy

= flgoh™") dh

Ky

_ f(g0) dh, since f € M(y)

Ky

= f(90)

So the image of f under the action of Py(y) is the function u € Py(y)(M(y)) such that
= f on (a,b) and (b, a).

Lemma 2.4.6 Fvery nontrivial, closed, left-invariant subspace of M(y) contains a non-
trivial, left-K,-invariant function from M(y).



Proof:
Let M be our closed, non-trivial, left-invariant subspace of M(y).
Thus there is some u € M,u # 0. We can assume without loss of generality that

u(e) # 0 (since there must be some g € Aut(I')) for which u(g) # 0, and so the left

translate by ¢~' must have non-zero value at €).

Now Py(y)(M) C M, since M is left-invariant, so Py\(y)u € M, but from above
(Pra(y)u)(e) = u(e) # 0, so P\(y)u is a non-trivial left- K-invariant function in M. [ |

This means that A, can have at most 2 irreducible subrepresentations, since if there
were n subrepresentations, then there would be n closed, non-trivial, left-invariant sub-
spaces, which means that the dimension of the left- K- invariant subspace would have to
be > n. So there are at most 2.

Therefore either A, is irreducible, or A\, = 01 & 03, where 07, 03 are irreducible.

Lemma 2.4.7 y s a minimal tree for A\, and for any subrepresentations it might have.

Proof:
For any v € V, f € M(y), g € Aut(l),

(PG = [ ) ai
. / F(gk~'g™g) di

- / Flgk™) dk

Kgy

= 0

So P\(v) = 0 for all v € V| and from above we have shown that there are functions for
which P, (y) is non-zero. Therefore y is minimal. [ |

Thus the irreducible subrepresentations of A, are special.
Furthermore, they are essentially the only special representations, by the following
lemma.

Lemma 2.4.8 Fvery special representation is unitarily equivalent to a subrepresentation

of Ay.

Proof:

If 7 is special, and & € P.(y)&, then (7(g)¢, &) € S(y) € L*(Aut(T)). So 7 is square
integrable, and so by the theory of square integrable representations 7 can be intertwined
with A, so # =~ some subrepresentation of A, (see Section 2.2). [ |

Which brings us to our final theorem for this section.

Theorem 2.4.9 ), is the direct sum of two inequivalent, irreducible subrepresentalions
o1 and o4.

Proof:

Let fr(y) = f-(y) = 1 and hy = 1,h- = —1 and f,h € the left- K,-invariant
subspace of M(y). This is a basis for this subspace, since (1,1) and (1, —1) are orthogonal
in C?, so (f,h) =0 in L?(Aut(T)).



Let go be an inversion on y. Then A(go)f = f and A(g,)h = —h.

Now consider the closed subspaces M; and M, generated by the sets {A(s)f : s €
Aut(I")} and {A(s)h : s € Aut(I")} respectively. These two spaces are not equal to one
another, and are both clearly non-trivial closed subspaces of M(y).

Thus My and M, carry subrepresentations of oy and o3 of A,.

Let F(t) = (A(t)f,h). F is left- K -invariant, since for all k£ € K,

F(kt) = (\(kt)f,h)
= (AW AETR)
= (A S, h)

since h is K,-invariant. However F(y) = F_(y) = (f, h) = 0, which implies that ¥ = 0.

This gives us that (v,w) = 0 for all v € My, w € My. Thus M; L M, and hence
M, & My = M(y) (if there were any other direct summands, then they would have to be
left- K'y-invariant, which is a contradiction).

Therefore A\, = 01 & 04, and they must both be irreducible.

Now assume that oy is equivalent to o3. Then there is some unitary operator U :
My — M, such that Uoy(g) = 02(g)U. Since oy, 04 are subrepresentations of A,, so we
can write U),(g) = A, (¢g)U, which implies that UPy(y) = Pi(y)U, that is U maps the
left- Ky-invariant functions of M; to the left- Ky-invariant functions of Mj, which implies
that Uf = ch, where ¢ = +1. However A\(go)Uf = —ch, but UX(go)f = Uf = ch,
which implies U = 0. Thus we have a contradiction. So the two representations are not
equivalent. [ |

It can also be shown that o; and oy have formal dimensions d,, = d,, = % (see
Figa-Talamanca [4, I11, §2, p118]). This is useful in determining the Plancherel Formula
for L*(Aut(T')) (see Section 2.6).

2.5 Cuspidal Representations

We now move on to briefly deal with the cuspidal representations of Aut(I'). Let 7 be
cuspidal, and let 7' be its minimal tree. We have the following initial results.

Lemma 2.5.1 Let T be a complete subtree of I' with diam(T) > 2. Let S be a finite
complete subtree with T'C S. Then there exists a proper complete subtree Z of T' such
that [(Z g I(S[(T

Proof:

Without loss of generality, we may assume that 7'N S contains an edge. This follows
since if T'N S is either empty or a single edge, then there exists some unique v € T' of
minimal distance m from S. We then set S’ = Bg(m + 1) = S,,41. The intersection of
T and S’ is clearly an edge, and if 7' C S’ then either T" has diameter < 2 or T' is not
complete. Clearly Kgs: C K.

Let Z = SNT. Then Z is a complete, proper subtree of T'. It is also a complete
subtree of S. Hence given any k£ € Kz we can find an automorphism k; € Kp which
agrees with £ on S\ T. Similarly, we can find an automorphism k; € Kg such that
ki = kk;l, since kk;l clearly stabilises S. Hence k = kyky and therefore K; C KsKr. R



Proposition 2.5.2 Let T' be a finite complete subtree of I' with diam(T) > 2. Let S
be a finite complete sublree of I'. If u is a left-Kg-invariant element of S(T'), then
supp(u) C {g € Aut(T) : gT" C S}.

Proof:

We want to show that if u € S(T') is left- Kg-invariant, then u(g) = 0 for all g such
that ¢7" € S.

Ifg=eand T"Z S, then there exists a complete Z C T such that K; C KsKr. Since
u is left- Kg-invariant and right- Kp-invariant, then u must be constant on K. However,
since Z C T, we have that for all h € K,

/I u(gk)dk:/K u(g) dk =0

which means that u(h) =0 for all h € K. In particular, this means u(e) = 0.
Now, for more general g, we consider u(kg) € S(g7T'). u(kg) is still left- Kg-invariant,
so by the above argument, if ¢7" Z S, then u(eg) = u(g) = 0. [ |

Corollary 2.5.3 Let [T] = {gT : g € Aut(I')}, then T" is minimal for = iff T" € [T].

Proof:

We already know that if 7' is minimal, then ¢7T is also minimal.

If 77 is minimal, then 7" must have £, vertices. Furthermore, let ¢ be a non-trivial Kp-
invariant vector, and let n be a non-trivial Ky/-invariant vector. Then (7 (.)¢,n) € S(T)
where Tiz()en = T'. This function is non-trivial, and so has non-trivial support. Hence
by the Proposition above, there is some ¢ such that ¢7" C T”. Therefore ¢7 = T, since
the number of vertices in T', ¢7 and T" are the same. [ |

Corollary 2.5.4 S(T') C L*(Aut(I"))

Proof:

If w e S(T), then |u| < oo, since if there were some g € Aut(I') such that u(g) = oo,
then u(gk) = oo for all k& € Kp, which implies since Ky C K. for a complete proper
subtree T° of T', and p(K7) > 0, that

/ u(gk) dk = 0o
Ko

Hence, since T' has compact support, and u is bounded, it must be L2, [ |

We are again interested in the subspace of left- Kr-invariant functions. As with the
previous section, we can show that the function is determined by its value on the subgroup
of automorphisms which stabilise T" as a set, ie. the subgroup Kr = {g € Aut(T") : ¢T =
T}. Tt can be shown that Kr is normal in RT, and since these functions are constant
on Kt it makes sense to consider them as functions on RT/[(T, which is a finite group
isomorphic to Aut(7").

An argument similar to the one in the previous section will give us that the subspace
of left- Kp-invariant functions has dimension equal to the number of elements in KT/KT.

We can therefore consider S(T') as the space of functions on I' x Aut(I"). This space
is the analogue of S in the special case, and so we will call it ‘SN’(T)



Let M(T') be the subspace of L*(T") consisting of functions for which conditions (i)
and (iii) of S(T") hold.

Clearly we have that S(T') C M(T), and M(T) is a non-trivial, closed, left-invariant
subspace of L?. Thus we can restrict A to M(T), and we will call this restriction Ar.
Again, Ar is unitarily equivalent to A;r. Finally P\(T")M(T) C S(T) for all finite
complete subtrees T".

Proposition 2.5.5 M(T) is the closure of S(T) in L*(Aut(T)).

Proof:

The proof of this involves showing that any f € M(T') is the limit of some sequence
fnin S(T).

The proof of this is essentially the same as for the special case, but we use gSN’(T)
instead of S (see Proposition 2.4.5). [ |

We can again deduce the action of Py(T), since if ¢ € K7, then

(PN = [ AR) di

= Jf(k™1g) dk

Kr

= flgh™g7"g) dh

I{gT

= flgh™) dh

Kp

= f(g) dh, since f € M(T)

Kp

= f(9)

Thus tNhe action of P\(T) is to take f to the left- Kp-invariant function which agrees with
it on K.
We now have, by analogy with the special case, the following results

Lemma 2.5.6 Fvery nontrivial, closed, left-invariant subspace of M(T') contains a non-
trivial, left-Kr-invariant function from M(T).

Lemma 2.5.7 T is a minimal tree for Ay and for any subrepresentations it might have.

Lemma 2.5.8 Fvery special representation is unitarily equivalent to a subrepresentation

Of )\T-

Proof: These are proved in exactly the same fashion as for the special case. (See

Lemmas 2.4.6,2.4.7 and 2.4.8).

Before we can identify the irreducible subrepresentations, we need to introduce the
following.

Definition 2.5.1 Let T;, 1 = 1,...,5 be the maximal complete proper sublrees of T.
A unitary representation of Kr is called non-degenerate if it has no nonzero Kr,-
invariant vectors foriv=1,...,7.

Let (KT)Q be the set of all such representations which are trivial on Kr.



Then we have the following.

Theorem 2.5.9 If

or = @ (dimo)o

c€(Kr)g

then A is unitarily equivalent to

Ind(or) = @ (dimo)Ind(o)

ce(K7)d

and each of the Ind(o) is irreducible (and therefore cuspidal).
Proof: See Theorem 3.14 of Figa-Talamanca [4, 111, §3, p134].

Furthermore, it is also possible to show that for each finite complete subtree T' of
diameter > 2, there exists a cuspidal representation = for which 7' is a minimal tree.
(See Figa-Talamanca [4, III, §3, p124]). This is important in finding the Plancherel
Formula for L?(Aut(T")).

2.6 Extensions and Generalisations

In this section we will tie up some loose ends.

Spherical Representations

Although spherical representations cannot be dealt with in this thesis, as the required
theory would add another 30 pages, the basic method of attack and the main results
should be given. For complete details, the interested reader is directed to Chapter II of
Figa-Talamanca [4], and the papers by Cartier [1] and Figa-Talamanca and Steger [5].

The approach is via investigation of spherical harmonic functions on I'; that is func-
tions f which depend only on the distance from some fixed vertex o € V', and in addition
have the property that

Lf(u)=(qg+1) Zf (u)

v€IBo(

for some constant ¢ (L is called the Laplace operatoron I', and hence f is an eigenfunction
of L), and finally f(o) =

It can be shown that the spherical representations of Aut(I') correspond to the positive
definite spherical functions, and that they have the form =, : G — L*(Q, v,) where (7,1,1)
is the positive definite spherical function with associated eigenvalue (¢ +1)"'¢'/22Re(q™)
where z = 1 + it for ¢ € [0,7/In(q)], and 1 is the function which is 1 everywhere on €.

From this it is possible to get that for all left- K ,-invariant functions f on Autl’ with
compact support, we have

17 = [ Imsad Dl dmlr)

where J = [0,7/In(q)] and dm(t) = 21n(9) (3 + 4t)|2dt, where c(z) = B

2m(g+1) g+l g—2—gq=—1
and ||.||zs is the Hilbert-Schmidt norm defined on the bounded linear operators on the

appropriate Hilbert space, where ||T||gs = Tr(T*T)"/2.

—1




The Plancherel Formula for L?(Aut(T))

Again we will just state the basic result, which is that for every continuous function f
on Aut(I') with compact support, we have:

113 = [ Izl Dlfs dn(t) + L= 30 2T P )

=1

Y (YD dimoTe(Ind(o) () () ())")

(7], diam(7)>2 p(Kr) se(Kr)f

For the reasoning behind this, see Figa-Talamanca [4, 111, §3, p136].

Other Groups

Much of this chapter holds for any closed subgroup G of Aut(l') which can be written in
the form G = KF = FK where K is compact and F is a transitive subgroup for which
g 'Kg N F = {e}, since then ¢ is unimodular, and it will have most of the required
properties. However, it also needs to have a sufficiently large rotation group for the
section on cuspidal representations to hold.

The two most interesting such subgroups would be Auty(I') which is the subgroup
of Aut(T") generated by all rotations (ie. it is inversion-free), and PSL(2, P), where P
is a p-adic field (which acts on a homogeneous tree, see Figa-Talamanca [4, Appendix,
§5, pl56]. Both these groups are inversion free which means that there is only one
irreducible special representation. In the case of Auty(I') the method for the cuspidal
representations still works, however, PSL(2, P) has insufficient rotations.

Again, for more information, see Chapter III of Figa-Talamanca [4].
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